Inverse Problems

Inverse Problems PDF Author: Alexander G. Ramm
Publisher: Springer Science & Business Media
ISBN: 0387232184
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
Inverse Problems is a monograph which contains a self-contained presentation of the theory of several major inverse problems and the closely related results from the theory of ill-posed problems. The book is aimed at a large audience which include graduate students and researchers in mathematical, physical, and engineering sciences and in the area of numerical analysis.

Inverse Problems

Inverse Problems PDF Author: Alexander G. Ramm
Publisher: Springer Science & Business Media
ISBN: 0387232184
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
Inverse Problems is a monograph which contains a self-contained presentation of the theory of several major inverse problems and the closely related results from the theory of ill-posed problems. The book is aimed at a large audience which include graduate students and researchers in mathematical, physical, and engineering sciences and in the area of numerical analysis.

Inverse Problems with Applications in Science and Engineering

Inverse Problems with Applications in Science and Engineering PDF Author: Daniel Lesnic
Publisher: Chapman & Hall/CRC
ISBN: 9781032125381
Category : Inverse problems (Differential equations)
Languages : en
Pages :

Get Book Here

Book Description
"Driven the advancement of industrial mathematics and the need for impact case studies, Inverse Problems with Applications in Science and Engineering thoroughly examines the state-of-the-art of some representative classes of inverse and ill-posed problems for partial differential equations (PDEs). The natural practical applications of this examination arise in heat transfer, electrostatics, porous media, acoustics, fluid and solid mechanics - all of which are addressed in this text. Features: Covers all types of PDEs, namely, elliptic (Laplace's, Helmholtz, modified Helmholtz, biharmonic, Stokes), parabolic (heat, convection-reaction-diffusion) and hyperbolic (wave) Excellent reference for post-graduates and researchers in mathematics, engineering, and any other scientific disciplines that deal with inverse problems Contains both theory and numerical algorithms for solving all types of inverse and ill-posed problems"--

Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Fixed-Point Algorithms for Inverse Problems in Science and Engineering PDF Author: Heinz H. Bauschke
Publisher: Springer Science & Business Media
ISBN: 1441995692
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.

Linear and Nonlinear Inverse Problems with Practical Applications

Linear and Nonlinear Inverse Problems with Practical Applications PDF Author: Jennifer L. Mueller
Publisher: SIAM
ISBN: 1611972345
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.

An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems PDF Author: Andreas Kirsch
Publisher: Springer Science & Business Media
ISBN: 1441984747
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.

Inverse Problems in Engineering Mechanics II

Inverse Problems in Engineering Mechanics II PDF Author: G.S. Dulikravich
Publisher: Elsevier
ISBN: 0080535151
Category : Science
Languages : en
Pages : 607

Get Book Here

Book Description
Inverse Problems are found in many areas of engineering mechanics and there are many successful applications e.g. in non-destructive testing and characterization of material properties by ultrasonic or X-ray techniques, thermography, etc. Generally speaking, inverse problems are concerned with the determination of the input and the characteristics of a system, given certain aspects of its output. Mathematically, such problems are ill-posed and have to be overcome through development of new computational schemes, regularization techniques, objective functionals, and experimental procedures. Following the IUTAM Symposium on these topics, held in May 1992 in Tokyo, another in November 1994 in Paris, and also the more recent ISIP'98 in March 1998 in Nagano, it was concluded that it would be fruitful to gather regularly with researchers and engineers for an exchange of the newest research ideas. The most recent Symposium of this series "International Symposium on Inverse Problems in Engineering Mechanics (ISIP2000)" was held in March of 2000 in Nagano, Japan, where recent developments in inverse problems in engineering mechanics and related topics were discussed.The following general areas in inverse problems in engineering mechanics were the subjects of ISIP2000: mathematical and computational aspects of inverse problems, parameter or system identification, shape determination, sensitivity analysis, optimization, material property characterization, ultrasonic non-destructive testing, elastodynamic inverse problems, thermal inverse problems, and other engineering applications. The papers in these proceedings provide a state-of-the-art review of the research on inverse problems in engineering mechanics and it is hoped that some breakthrough in the research can be made and that technology transfer will be stimulated and accelerated due to their publication.

Inverse and Crack Identification Problems in Engineering Mechanics

Inverse and Crack Identification Problems in Engineering Mechanics PDF Author: Georgios E. Stavroulakis
Publisher: Springer Science & Business Media
ISBN: 9780792366904
Category : Computers
Languages : en
Pages : 248

Get Book Here

Book Description
Written for structural and mechanical engineers involved in nondestructive testing and quality control projects as well as research engineers and applied mathematicians, this monograph provides all the required material for the mathematical and numerical modeling of crack identification testing procedures in statis and dynamics. It uses boundary element techniques for delicate computational mechanics modeling and considers both elastostatic and harmonic or transient dynamic problems. Inverse problems are formulated as output error minimization problems and are theoretically studied as a bilevel optimization problem. Beyond classical numerical optimization, soft computing tools (neural networks and genetic algorithms) and filter algorithms are used for the numerical solution. Stavroulakis teaches applied mathematics and civil engineering at the Technical University Carolo Wilhelmina. c. Book News Inc.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems PDF Author: Curtis R. Vogel
Publisher: SIAM
ISBN: 0898717574
Category : Mathematics
Languages : en
Pages : 195

Get Book Here

Book Description
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Discrete Inverse Problems

Discrete Inverse Problems PDF Author: Per Christian Hansen
Publisher: SIAM
ISBN: 089871883X
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.

A Taste of Inverse Problems

A Taste of Inverse Problems PDF Author: Martin Hanke
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171

Get Book Here

Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.