Inverse Design of Turbomachinery Blading for Arbitrary Blade Thickness in Three-dimensional Transonic Flow

Inverse Design of Turbomachinery Blading for Arbitrary Blade Thickness in Three-dimensional Transonic Flow PDF Author: Y. L. Lang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.

Inverse Design of Turbomachinery Blading for Arbitrary Blade Thickness in Three-dimensional Transonic Flow

Inverse Design of Turbomachinery Blading for Arbitrary Blade Thickness in Three-dimensional Transonic Flow PDF Author: Y. L. Lang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.

Aerodynamic Inverse Design of Turbomachinery Blading in Two-dimensional Viscous Flow

Aerodynamic Inverse Design of Turbomachinery Blading in Two-dimensional Viscous Flow PDF Author: Kasra Daneshkhah
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
An inverse blade design method, applicable to 2D and 3D flow in turbomachinery blading is developed and is implemented for the design of 2D cascades in compressible viscous flow. The prescribed design quantities are either the pressure distributions on the blade suction and pressure surfaces or the blade pressure loading and its thickness distribution. The design scheme is based on a wall movement approach where the blade walls are modified based on a virtual velocity distribution that would make the current and target momentum fluxes balance on the blade suction and pressure surfaces. The virtual velocity is used to drive the blade geometry towards a steady state shape corresponding to the prescribed quantities. The design method is implemented in a consistent manner into the unsteady Reynolds Averaged Navier-Stokes (RANS) equations, where an arbitrary Lagrangian-Eulerian (ALE) formulation is used and the boundaries of the computational domain can move and deform in any prescribed time-varying fashion to accommodate the blade movement. A cell vertex finite volume method is used for discretizing the governing equations in space and, at each physical time level, integration in pseudotime is performed using an explicit Runge-Kutta scheme, where local time stepping and residual smoothing are used for convergence acceleration. For design calculations, which are inherently unsteady due to blade movement, the time accuracy of the solution is achieved by means of a dual time stepping scheme. An algebraic Baldwin-Lomax model is used for turbulence closure. The flow analysis method is applied to several test cases for steady state internal flow in linear cascades and the results are compared to numerical and experimental data available in the literature. The inverse design method is first validated for three different configurations, namely a parabolic cascade, a subsonic compressor cascade and a transonic impulse turbine cascade, where different choices of the prescribed design variables are used. The usefulness, robustness, accuracy, and flexibility of this inverse method are then demonstrated on the design of an ONERA transonic compressor cascade, a NACA transonic compressor cascade, a highly cambered DFVLR subsonic turbine cascade, and a VKI transonic turbine cascade geometries, which are typical of gas turbine blades used in modern gas turbine engines.

Three-Dimensional Flow in Radial Turbomachinery and Its Impact on Design

Three-Dimensional Flow in Radial Turbomachinery and Its Impact on Design PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781792948770
Category :
Languages : en
Pages : 32

Get Book Here

Book Description
In the two papers on the 'Theory of Blade Design for Large Deflections' published in 1984, a new inverse design technique was presented for designing the shape of turbomachinery blades in three-dimensional flow. The technique involves the determination of the blade profile from the specification of a distribution of the product of the radius and the pitched averaged tangential velocity (i.e., r bar-V(sub theta), the mean swirl schedule) within the bladed region. This is in contrast to the conventional inverse design technique for turbomachinery blading in two dimensional flow in which the blade surface pressure or velocity distribution is specified and the blade profile determined as a result; this is feasible in two-dimensional flow because the streamlines along the blade surfaces are known a priori. However, in three-dimensional flow, the stream surface is free to deform within the blade passage so that the streamlines on the blade surfaces are not known a priori; thus it is difficult and not so useful to prescribe the blade surface pressure or velocity distribution and determine the resulting blade profile. It therefore seems logical to prescribe the swirl schedule within the bladed region for designing a turbomachinery blade profile in three-dimensional flow. Furthermore, specifying r bar-V(sub theta) has the following advantages: (1) it is related to the circulation around the blade (i.e., it is an aerodynamic quantity); (2) the work done or extracted is approximately proportional to the overall change in r bar-V(sub theta) across a given blade row (Euler turbine equation); and (3) the rate of change of r bar-V(sub theta) along the mean streamline at the blade is related to the pressure jump across the blade and therefore the blade loading. Since the publications of those two papers, the technique has been applied to the design of a low speed as well as a high speed radial inflow turbine (for turbocharger applications) both of which showed definite improvements...

ASME Technical Papers

ASME Technical Papers PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 570

Get Book Here

Book Description


Aerodynamic Inverse Design of Transonic Turbomachinery Cascades

Aerodynamic Inverse Design of Transonic Turbomachinery Cascades PDF Author: Majīd Aḥmadī
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 0

Get Book Here

Book Description
An aerodynamic inverse design method for turbomachinery cascades is presented and is implemented in a finite volume method. In this design method, the mass-averaged swirl schedule and the blade thickness distribution are prescribed. The design method then provides the blade shape that would accomplish this loading by imposing the appropriate pressure jump across the blades and satisfying the blade boundary condition, the latter implies that the flow is tangent to the blade surfaces. This inverse design method is implemented using a cell-vertex finite volume method which solves the Euler equations on unstructured triangular meshes. A five-stage Runge-Kutta pseudo-time integration scheme is used to march the solution to steady state. Non-linear artificial viscosity is added to eliminate pressure-velocity decoupling and to capture shocks. Convergence is accelerated using local time stepping and implicit residual smoothing. The boundary conditions at inflow and outflow are based on the method of characteristics. The finite volume discretization method is validated against some standard cases of internal flow as well as linear cascades. The inverse design method is first validated for three different cascades namely, a parabolic cascade, a compressor cascade and a turbine inlet guide vane. It is then used to obtain a shock-free design of an impulse transonic cascade and of the ONERA transonic compressor cascade. A parametric study has shown that the blade profile is rather sensitive to the prescribed loading distributions and that, in most cases, a smooth loading distribution results in a shock-free cascade design.

Paper

Paper PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 714

Get Book Here

Book Description


Aerodynamic Inverse Design of Transonic Turbomachinery Cascades

Aerodynamic Inverse Design of Transonic Turbomachinery Cascades PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Aerodynamic Inverse Design of Multistage Turbomachinery Blading

Aerodynamic Inverse Design of Multistage Turbomachinery Blading PDF Author: Benedikt Roidl
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Advances in Fluid Mechanics VII

Advances in Fluid Mechanics VII PDF Author: M. Rahman
Publisher: WIT Press
ISBN: 1845641094
Category : Science
Languages : en
Pages : 513

Get Book Here

Book Description
Covering the latest developments in this field, this text features edited versions of papers presented at the Seventh International Conference on Advances in Fluid Mechanics.

Aerothermodynamics of Turbomachinery

Aerothermodynamics of Turbomachinery PDF Author: Naixing Chen
Publisher: John Wiley & Sons
ISBN: 0470825014
Category : Science
Languages : en
Pages : 448

Get Book Here

Book Description
Computational Fluid Dynamics (CFD) is now an essential and effective tool used in the design of all types of turbomachine, and this topic constitutes the main theme of this book. With over 50 years of experience in the field of aerodynamics, Professor Naixing Chen has developed a wide range of numerical methods covering almost the entire spectrum of turbomachinery applications. Moreover, he has also made significant contributions to practical experiments and real-life designs. The book focuses on rigorous mathematical derivation of the equations governing flow and detailed descriptions of the numerical methods used to solve the equations. Numerous applications of the methods to different types of turbomachine are given and, in many cases, the numerical results are compared to experimental measurements. These comparisons illustrate the strengths and weaknesses of the methods – a useful guide for readers. Lessons for the design of improved blading are also indicated after many applications. Presents real-world perspective to the past, present and future concern in turbomachinery Covers direct and inverse solutions with theoretical and practical aspects Demonstrates huge application background in China Supplementary instructional materials are available on the companion website Aerothermodynamics of Turbomachinery: Analysis and Design is ideal for senior undergraduates and graduates studying in the fields of mechanics, energy and power, and aerospace engineering; design engineers in the business of manufacturing compressors, steam and gas turbines; and research engineers and scientists working in the areas of fluid mechanics, aerodynamics, and heat transfer. Supplementary lecture materials for instructors are available at www.wiley.com/go/chenturbo