Author: Kenji Nakanishi
Publisher: European Mathematical Society
ISBN: 9783037190951
Category : Hamiltonian systems
Languages : en
Pages : 264
Book Description
The notion of an invariant manifold arises naturally in the asymptotic stability analysis of stationary or standing wave solutions of unstable dispersive Hamiltonian evolution equations such as the focusing semilinear Klein-Gordon and Schrodinger equations. This is due to the fact that the linearized operators about such special solutions typically exhibit negative eigenvalues (a single one for the ground state), which lead to exponential instability of the linearized flow and allows for ideas from hyperbolic dynamics to enter. One of the main results proved here for energy subcritical equations is that the center-stable manifold associated with the ground state appears as a hyper-surface which separates a region of finite-time blowup in forward time from one which exhibits global existence and scattering to zero in forward time. The authors' entire analysis takes place in the energy topology, and the conserved energy can exceed the ground state energy only by a small amount. This monograph is based on recent research by the authors. The proofs rely on an interplay between the variational structure of the ground states and the nonlinear hyperbolic dynamics near these states. A key element in the proof is a virial-type argument excluding almost homoclinic orbits originating near the ground states, and returning to them, possibly after a long excursion. These lectures are suitable for graduate students and researchers in partial differential equations and mathematical physics. For the cubic Klein-Gordon equation in three dimensions all details are provided, including the derivation of Strichartz estimates for the free equation and the concentration-compactness argument leading to scattering due to Kenig and Merle.
Invariant Manifolds and Dispersive Hamiltonian Evolution Equations
Author: Kenji Nakanishi
Publisher: European Mathematical Society
ISBN: 9783037190951
Category : Hamiltonian systems
Languages : en
Pages : 264
Book Description
The notion of an invariant manifold arises naturally in the asymptotic stability analysis of stationary or standing wave solutions of unstable dispersive Hamiltonian evolution equations such as the focusing semilinear Klein-Gordon and Schrodinger equations. This is due to the fact that the linearized operators about such special solutions typically exhibit negative eigenvalues (a single one for the ground state), which lead to exponential instability of the linearized flow and allows for ideas from hyperbolic dynamics to enter. One of the main results proved here for energy subcritical equations is that the center-stable manifold associated with the ground state appears as a hyper-surface which separates a region of finite-time blowup in forward time from one which exhibits global existence and scattering to zero in forward time. The authors' entire analysis takes place in the energy topology, and the conserved energy can exceed the ground state energy only by a small amount. This monograph is based on recent research by the authors. The proofs rely on an interplay between the variational structure of the ground states and the nonlinear hyperbolic dynamics near these states. A key element in the proof is a virial-type argument excluding almost homoclinic orbits originating near the ground states, and returning to them, possibly after a long excursion. These lectures are suitable for graduate students and researchers in partial differential equations and mathematical physics. For the cubic Klein-Gordon equation in three dimensions all details are provided, including the derivation of Strichartz estimates for the free equation and the concentration-compactness argument leading to scattering due to Kenig and Merle.
Publisher: European Mathematical Society
ISBN: 9783037190951
Category : Hamiltonian systems
Languages : en
Pages : 264
Book Description
The notion of an invariant manifold arises naturally in the asymptotic stability analysis of stationary or standing wave solutions of unstable dispersive Hamiltonian evolution equations such as the focusing semilinear Klein-Gordon and Schrodinger equations. This is due to the fact that the linearized operators about such special solutions typically exhibit negative eigenvalues (a single one for the ground state), which lead to exponential instability of the linearized flow and allows for ideas from hyperbolic dynamics to enter. One of the main results proved here for energy subcritical equations is that the center-stable manifold associated with the ground state appears as a hyper-surface which separates a region of finite-time blowup in forward time from one which exhibits global existence and scattering to zero in forward time. The authors' entire analysis takes place in the energy topology, and the conserved energy can exceed the ground state energy only by a small amount. This monograph is based on recent research by the authors. The proofs rely on an interplay between the variational structure of the ground states and the nonlinear hyperbolic dynamics near these states. A key element in the proof is a virial-type argument excluding almost homoclinic orbits originating near the ground states, and returning to them, possibly after a long excursion. These lectures are suitable for graduate students and researchers in partial differential equations and mathematical physics. For the cubic Klein-Gordon equation in three dimensions all details are provided, including the derivation of Strichartz estimates for the free equation and the concentration-compactness argument leading to scattering due to Kenig and Merle.
Attractors of Hamiltonian Nonlinear Partial Differential Equations
Author: Alexander Komech
Publisher: Cambridge University Press
ISBN: 100903605X
Category : Mathematics
Languages : en
Pages :
Book Description
This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research.
Publisher: Cambridge University Press
ISBN: 100903605X
Category : Mathematics
Languages : en
Pages :
Book Description
This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research.
PDE Dynamics
Author: Christian Kuehn
Publisher: SIAM
ISBN: 1611975654
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.
Publisher: SIAM
ISBN: 1611975654
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book provides an overview of the myriad methods for applying dynamical systems techniques to PDEs and highlights the impact of PDE methods on dynamical systems. Also included are many nonlinear evolution equations, which have been benchmark models across the sciences, and examples and techniques to strengthen preparation for research. PDE Dynamics: An Introduction is intended for senior undergraduate students, beginning graduate students, and researchers in applied mathematics, theoretical physics, and adjacent disciplines. Structured as a textbook or seminar reference, it can be used in courses titled Dynamics of PDEs, PDEs 2, Dynamical Systems 2, Evolution Equations, or Infinite-Dimensional Dynamics.
Geometric Numerical Integration and Schrödinger Equations
Author: Erwan Faou
Publisher: European Mathematical Society
ISBN: 9783037191002
Category : Mathematics
Languages : en
Pages : 152
Book Description
The goal of geometric numerical integration is the simulation of evolution equations possessing geometric properties over long periods of time. Of particular importance are Hamiltonian partial differential equations typically arising in application fields such as quantum mechanics or wave propagation phenomena. They exhibit many important dynamical features such as energy preservation and conservation of adiabatic invariants over long periods of time. In this setting, a natural question is how and to which extent the reproduction of such long-time qualitative behavior can be ensured by numerical schemes. Starting from numerical examples, these notes provide a detailed analysis of the Schrodinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated by symplectic splitting methods. Analysis of stability and instability phenomena induced by space and time discretization are given, and rigorous mathematical explanations are provided for them. The book grew out of a graduate-level course and is of interest to researchers and students seeking an introduction to the subject matter.
Publisher: European Mathematical Society
ISBN: 9783037191002
Category : Mathematics
Languages : en
Pages : 152
Book Description
The goal of geometric numerical integration is the simulation of evolution equations possessing geometric properties over long periods of time. Of particular importance are Hamiltonian partial differential equations typically arising in application fields such as quantum mechanics or wave propagation phenomena. They exhibit many important dynamical features such as energy preservation and conservation of adiabatic invariants over long periods of time. In this setting, a natural question is how and to which extent the reproduction of such long-time qualitative behavior can be ensured by numerical schemes. Starting from numerical examples, these notes provide a detailed analysis of the Schrodinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated by symplectic splitting methods. Analysis of stability and instability phenomena induced by space and time discretization are given, and rigorous mathematical explanations are provided for them. The book grew out of a graduate-level course and is of interest to researchers and students seeking an introduction to the subject matter.
XVIIth International Congress on Mathematical Physics
Author: Arne Jensen
Publisher: World Scientific
ISBN: 9814449245
Category : Science
Languages : en
Pages : 743
Book Description
This is an in-depth study of not just about Tan Kah-kee, but also the making of a legend through his deeds, self-sacrifices, fortitude and foresight. This revised edition sheds new light on his political agonies in Mao's China over campaigns against capitalists and intellectuals.
Publisher: World Scientific
ISBN: 9814449245
Category : Science
Languages : en
Pages : 743
Book Description
This is an in-depth study of not just about Tan Kah-kee, but also the making of a legend through his deeds, self-sacrifices, fortitude and foresight. This revised edition sheds new light on his political agonies in Mao's China over campaigns against capitalists and intellectuals.
Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on $mathbb {R}^{3+1}$
Author: Stefano Burzio
Publisher: American Mathematical Society
ISBN: 1470453460
Category : Mathematics
Languages : en
Pages : 88
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470453460
Category : Mathematics
Languages : en
Pages : 88
Book Description
View the abstract.
On Stability of Type II Blow Up for the Critical Nonlinear Wave Equation in $mathbb {R}^{3+1}$
Author: Joachim K Krieger
Publisher: American Mathematical Society
ISBN: 147044299X
Category : Mathematics
Languages : en
Pages : 129
Book Description
The author shows that the finite time type II blow up solutions for the energy critical nonlinear wave equation $ Box u = -u^5 $ on $mathbb R^3+1$ constructed in Krieger, Schlag, and Tataru (2009) and Krieger and Schlag (2014) are stable along a co-dimension three manifold of radial data perturbations in a suitable topology, provided the scaling parameter $lambda (t) = t^-1-nu $ is sufficiently close to the self-similar rate, i. e. $nu >0$ is sufficiently small. Our method is based on Fourier techniques adapted to time dependent wave operators of the form $ -partial _t^2 + partial _r^2 + frac 2rpartial _r +V(lambda (t)r) $ for suitable monotone scaling parameters $lambda (t)$ and potentials $V(r)$ with a resonance at zero.
Publisher: American Mathematical Society
ISBN: 147044299X
Category : Mathematics
Languages : en
Pages : 129
Book Description
The author shows that the finite time type II blow up solutions for the energy critical nonlinear wave equation $ Box u = -u^5 $ on $mathbb R^3+1$ constructed in Krieger, Schlag, and Tataru (2009) and Krieger and Schlag (2014) are stable along a co-dimension three manifold of radial data perturbations in a suitable topology, provided the scaling parameter $lambda (t) = t^-1-nu $ is sufficiently close to the self-similar rate, i. e. $nu >0$ is sufficiently small. Our method is based on Fourier techniques adapted to time dependent wave operators of the form $ -partial _t^2 + partial _r^2 + frac 2rpartial _r +V(lambda (t)r) $ for suitable monotone scaling parameters $lambda (t)$ and potentials $V(r)$ with a resonance at zero.
Topics in Occupation Times and Gaussian Free Fields
Author: Alain-Sol Sznitman
Publisher: European Mathematical Society
ISBN: 9783037191095
Category : Mathematics
Languages : en
Pages : 128
Book Description
This book grew out of a graduate course at ETH Zurich during the spring 2011 term. It explores various links between such notions as occupation times of Markov chains, Gaussian free fields, Poisson point processes of Markovian loops, and random interlacements, which have been the object of intensive research over the last few years. These notions are developed in the convenient setup of finite weighted graphs endowed with killing measures. This book first discusses elements of continuous-time Markov chains, Dirichlet forms, potential theory, together with some consequences for Gaussian free fields. Next, isomorphism theorems and generalized Ray-Knight theorems, which relate occupation times of Markov chains to Gaussian free fields, are presented. Markovian loops are constructed and some of their key properties derived. The field of occupation times of Poisson point processes of Markovian loops is investigated. Of special interest are its connection to the Gaussian free field, and a formula of Symanzik. Finally, links between random interlacements and Markovian loops are discussed, and some further connections with Gaussian free fields are mentioned.
Publisher: European Mathematical Society
ISBN: 9783037191095
Category : Mathematics
Languages : en
Pages : 128
Book Description
This book grew out of a graduate course at ETH Zurich during the spring 2011 term. It explores various links between such notions as occupation times of Markov chains, Gaussian free fields, Poisson point processes of Markovian loops, and random interlacements, which have been the object of intensive research over the last few years. These notions are developed in the convenient setup of finite weighted graphs endowed with killing measures. This book first discusses elements of continuous-time Markov chains, Dirichlet forms, potential theory, together with some consequences for Gaussian free fields. Next, isomorphism theorems and generalized Ray-Knight theorems, which relate occupation times of Markov chains to Gaussian free fields, are presented. Markovian loops are constructed and some of their key properties derived. The field of occupation times of Poisson point processes of Markovian loops is investigated. Of special interest are its connection to the Gaussian free field, and a formula of Symanzik. Finally, links between random interlacements and Markovian loops are discussed, and some further connections with Gaussian free fields are mentioned.
Classical and Multilinear Harmonic Analysis
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 0521882451
Category : Mathematics
Languages : en
Pages : 389
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Publisher: Cambridge University Press
ISBN: 0521882451
Category : Mathematics
Languages : en
Pages : 389
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Classical and Multilinear Harmonic Analysis: Volume 1
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1139619160
Category : Mathematics
Languages : en
Pages : 389
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Publisher: Cambridge University Press
ISBN: 1139619160
Category : Mathematics
Languages : en
Pages : 389
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.