Author: Tetsushi Biwa
Publisher: World Scientific
ISBN: 1944659781
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Oscillations of gas and/or liquid columns in a flow channel can lead to various phenomena such as Stirling cycle heat engines, pulse tube refrigerators, as well as thermally induced gas oscillations like Sondhauss tube and Rijke tube. Although those phenomena may look different from each other, they can be universally described by the concepts of work flow and heat flow. Work flow stands for the acoustic power used in acoustics. Heat flow is the energy flow associated with the hydrodynamic transport of entropy. These energy flows help us to understand the thermoacoustic phenomena and construct acoustical heat engines.The book aims to provide a comprehensive overview of how the oscillations of gas and/or liquid columns make possible the mutual energy conversions between work flow and heat flow through thermal interactions between fluids and channel walls. The thermodynamic aspects of energy flows are highlighted by introducing Lagrangian point of view to explain the thermodynamic cycles that the fluid parcels undergo. The relevant experimental results are provided to verify the theoretical analysis based on basic equations of fluid dynamics.
Introduction To Thermoacoustic Devices
Author: Tetsushi Biwa
Publisher: World Scientific
ISBN: 1944659781
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Oscillations of gas and/or liquid columns in a flow channel can lead to various phenomena such as Stirling cycle heat engines, pulse tube refrigerators, as well as thermally induced gas oscillations like Sondhauss tube and Rijke tube. Although those phenomena may look different from each other, they can be universally described by the concepts of work flow and heat flow. Work flow stands for the acoustic power used in acoustics. Heat flow is the energy flow associated with the hydrodynamic transport of entropy. These energy flows help us to understand the thermoacoustic phenomena and construct acoustical heat engines.The book aims to provide a comprehensive overview of how the oscillations of gas and/or liquid columns make possible the mutual energy conversions between work flow and heat flow through thermal interactions between fluids and channel walls. The thermodynamic aspects of energy flows are highlighted by introducing Lagrangian point of view to explain the thermodynamic cycles that the fluid parcels undergo. The relevant experimental results are provided to verify the theoretical analysis based on basic equations of fluid dynamics.
Publisher: World Scientific
ISBN: 1944659781
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Oscillations of gas and/or liquid columns in a flow channel can lead to various phenomena such as Stirling cycle heat engines, pulse tube refrigerators, as well as thermally induced gas oscillations like Sondhauss tube and Rijke tube. Although those phenomena may look different from each other, they can be universally described by the concepts of work flow and heat flow. Work flow stands for the acoustic power used in acoustics. Heat flow is the energy flow associated with the hydrodynamic transport of entropy. These energy flows help us to understand the thermoacoustic phenomena and construct acoustical heat engines.The book aims to provide a comprehensive overview of how the oscillations of gas and/or liquid columns make possible the mutual energy conversions between work flow and heat flow through thermal interactions between fluids and channel walls. The thermodynamic aspects of energy flows are highlighted by introducing Lagrangian point of view to explain the thermodynamic cycles that the fluid parcels undergo. The relevant experimental results are provided to verify the theoretical analysis based on basic equations of fluid dynamics.
Thermoacoustics
Author: Gregory W. Swift
Publisher: Springer
ISBN: 3319669338
Category : Science
Languages : en
Pages : 340
Book Description
This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries. The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications chapters on hardware and measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.
Publisher: Springer
ISBN: 3319669338
Category : Science
Languages : en
Pages : 340
Book Description
This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries. The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications chapters on hardware and measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.
Thermoacoustic Instability
Author: R. I. Sujith
Publisher: Springer Nature
ISBN: 3030811352
Category : Science
Languages : en
Pages : 484
Book Description
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.
Publisher: Springer Nature
ISBN: 3030811352
Category : Science
Languages : en
Pages : 484
Book Description
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.
Understanding Acoustics
Author: Steven L. Garrett
Publisher: Springer
ISBN: 3319499785
Category : Science
Languages : en
Pages : 913
Book Description
This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.
Publisher: Springer
ISBN: 3319499785
Category : Science
Languages : en
Pages : 913
Book Description
This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.
Unsteady Combustor Physics
Author: Tim C. Lieuwen
Publisher: Cambridge University Press
ISBN: 1139576836
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.
Publisher: Cambridge University Press
ISBN: 1139576836
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.
Advances in Cryogenic Engineering
Author: R.W. Fast
Publisher: Springer Science & Business Media
ISBN: 1461533686
Category : Science
Languages : en
Pages : 729
Book Description
Proceedings of the 1991 Cryogenic Engineering Conference held in Huntsville, Alabama, June 11-14, 1991.
Publisher: Springer Science & Business Media
ISBN: 1461533686
Category : Science
Languages : en
Pages : 729
Book Description
Proceedings of the 1991 Cryogenic Engineering Conference held in Huntsville, Alabama, June 11-14, 1991.
Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems
Author: Xiaofeng Sun
Publisher: Elsevier
ISBN: 012408074X
Category : Technology & Engineering
Languages : en
Pages : 558
Book Description
Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems from the Shanghai Jiao Tong University Press Aerospace series, is the go-to reference on the topic, providing a modern take on the fundamental theory and applications relating to prediction and control of all major noise sources in aeropropulsion systems. This important reference compiles the latest knowledge and research advances, considering both the physics of aerodynamic noise generation in aero-engines and related numerical prediction techniques. Additionally, it introduces new vortex sound interaction models, a transfer element method, and a combustion instability model developed by the authors. Focusing on propulsion systems from inlet to exit, including combustion noise, this new resource will aid graduate students, researchers, and R&D engineers in solving the aircraft noise problems that currently challenge the industry. - Updates the knowledge-base on the sound source generated by aeropropulsion systems, from inlet to exit, including combustion noise - Covers new aerodynamic noise control technology aimed at the low-noise design of next generation aero-engines, including topics such as aerodynamic noise and aero-engine noise control - Includes new, cutting-edge models and methods developed by an author team led by the editor-in-chief of the Chinese Journal of Aeronautics and Astronautics - Considers both the physics of aerodynamic noise generation in aero-engines and related numerical prediction techniques
Publisher: Elsevier
ISBN: 012408074X
Category : Technology & Engineering
Languages : en
Pages : 558
Book Description
Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems from the Shanghai Jiao Tong University Press Aerospace series, is the go-to reference on the topic, providing a modern take on the fundamental theory and applications relating to prediction and control of all major noise sources in aeropropulsion systems. This important reference compiles the latest knowledge and research advances, considering both the physics of aerodynamic noise generation in aero-engines and related numerical prediction techniques. Additionally, it introduces new vortex sound interaction models, a transfer element method, and a combustion instability model developed by the authors. Focusing on propulsion systems from inlet to exit, including combustion noise, this new resource will aid graduate students, researchers, and R&D engineers in solving the aircraft noise problems that currently challenge the industry. - Updates the knowledge-base on the sound source generated by aeropropulsion systems, from inlet to exit, including combustion noise - Covers new aerodynamic noise control technology aimed at the low-noise design of next generation aero-engines, including topics such as aerodynamic noise and aero-engine noise control - Includes new, cutting-edge models and methods developed by an author team led by the editor-in-chief of the Chinese Journal of Aeronautics and Astronautics - Considers both the physics of aerodynamic noise generation in aero-engines and related numerical prediction techniques
FUNDAMENTALS OF COMBUSTION
Author: D. P. Mishra
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120333489
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Designed for both undergraduate and postgraduate students of mechanical, aerospace, chemical and metallurgical engineering, this compact and well-knitted textbook provides a sound conceptual basis in fundamentals of combustion processes, highlighting the basic principles of natural laws. In the initial part of the book, chemical thermodynamics, kinetics, and conservation equations are reviewed extensively with a view to preparing students to assimilate quickly intricate aspects of combustion covered in later chapters. Subsequently, the book provides extensive treatments of ‘pre-mixed laminar flame’, and ‘gaseous diffusion flame’, emphasizing the practical aspects of these flames. Besides, liquid droplet combustion under quiescent and convective environment is covered in the book. Simplified analysis of spray combustion is carried out which can be used as a design tool. An extensive treatment on the solid fuel combustion is also included. Emission combustion systems, and how to control emission from them using the latest techniques, constitute the subject matter of the final chapter. Appropriate examples are provided throughout to foster better understanding of the concepts discussed. Chapter-end review questions and problems are included to reinforce the learning process of students.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120333489
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Designed for both undergraduate and postgraduate students of mechanical, aerospace, chemical and metallurgical engineering, this compact and well-knitted textbook provides a sound conceptual basis in fundamentals of combustion processes, highlighting the basic principles of natural laws. In the initial part of the book, chemical thermodynamics, kinetics, and conservation equations are reviewed extensively with a view to preparing students to assimilate quickly intricate aspects of combustion covered in later chapters. Subsequently, the book provides extensive treatments of ‘pre-mixed laminar flame’, and ‘gaseous diffusion flame’, emphasizing the practical aspects of these flames. Besides, liquid droplet combustion under quiescent and convective environment is covered in the book. Simplified analysis of spray combustion is carried out which can be used as a design tool. An extensive treatment on the solid fuel combustion is also included. Emission combustion systems, and how to control emission from them using the latest techniques, constitute the subject matter of the final chapter. Appropriate examples are provided throughout to foster better understanding of the concepts discussed. Chapter-end review questions and problems are included to reinforce the learning process of students.
Thermoacoustic Combustion Instability Control
Author: Dan Zhao
Publisher: Academic Press
ISBN: 0323899188
Category : Technology & Engineering
Languages : en
Pages : 1145
Book Description
Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. - Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology - Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way - Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms
Publisher: Academic Press
ISBN: 0323899188
Category : Technology & Engineering
Languages : en
Pages : 1145
Book Description
Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. - Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology - Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way - Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms
Heat Transfer Enhancement of Heat Exchangers
Author: Sadik Kakaç
Publisher: Springer Science & Business Media
ISBN: 9401591598
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
Heat transfer enhancement in single-phase and two-phase flow heat exchangers in important in such industrial applications as power generating plant, process and chemical industry, heating, ventilation, air conditioning and refrigeration systems, and the cooling of electronic equipment. Energy savings are of primary importance in the design of such systems, leading to more efficient, environmentally friendly devices. This book provides invaluable information for such purposes.
Publisher: Springer Science & Business Media
ISBN: 9401591598
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
Heat transfer enhancement in single-phase and two-phase flow heat exchangers in important in such industrial applications as power generating plant, process and chemical industry, heating, ventilation, air conditioning and refrigeration systems, and the cooling of electronic equipment. Energy savings are of primary importance in the design of such systems, leading to more efficient, environmentally friendly devices. This book provides invaluable information for such purposes.