Author: John A. Hertz
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 350
Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Introduction To The Theory Of Neural Computation
Author: John A. Hertz
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 350
Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 350
Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Introduction To The Theory Of Neural Computation
Author: John A. Hertz
Publisher: Westview Press
ISBN:
Category : Computers
Languages : en
Pages : 354
Book Description
Lecture notes volume I.
Publisher: Westview Press
ISBN:
Category : Computers
Languages : en
Pages : 354
Book Description
Lecture notes volume I.
An Introduction to Computational Learning Theory
Author: Michael J. Kearns
Publisher: MIT Press
ISBN: 9780262111935
Category : Computers
Languages : en
Pages : 230
Book Description
Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.
Publisher: MIT Press
ISBN: 9780262111935
Category : Computers
Languages : en
Pages : 230
Book Description
Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.
An Introduction to Natural Computation
Author: Dana H. Ballard
Publisher: MIT Press
ISBN: 9780262522588
Category : Psychology
Languages : en
Pages : 338
Book Description
This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning models—ranging from neural network learning through reinforcement learning to genetic learning—and situates the various models in their appropriate neural context. To write about models of the brain before the brain is fully understood is a delicate matter. Very detailed models of the neural circuitry risk losing track of the task the brain is trying to solve. At the other extreme, models that represent cognitive constructs can be so abstract that they lose all relationship to neurobiology. An Introduction to Natural Computation takes the middle ground and stresses the computational task while staying near the neurobiology.
Publisher: MIT Press
ISBN: 9780262522588
Category : Psychology
Languages : en
Pages : 338
Book Description
This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning models—ranging from neural network learning through reinforcement learning to genetic learning—and situates the various models in their appropriate neural context. To write about models of the brain before the brain is fully understood is a delicate matter. Very detailed models of the neural circuitry risk losing track of the task the brain is trying to solve. At the other extreme, models that represent cognitive constructs can be so abstract that they lose all relationship to neurobiology. An Introduction to Natural Computation takes the middle ground and stresses the computational task while staying near the neurobiology.
Advanced Methods in Neural Computing
Author: Philip D. Wasserman
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 280
Book Description
This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 280
Book Description
This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.
An Information-Theoretic Approach to Neural Computing
Author: Gustavo Deco
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265
Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265
Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.
Analogical Connections
Author: Keith James Holyoak
Publisher: Intellect (UK)
ISBN:
Category : Computers
Languages : en
Pages : 520
Book Description
Presenting research on the computational abilities of connectionist, neural, and neurally inspired systems, this series emphasizes the question of how connectionist or neural network models can be made to perform rapid, short-term types of computation that are useful in higher level cognitive processes. The most recent volumes are directed mainly at researchers in connectionism, analogy, metaphor, and case-based reasoning, but are also suitable for graduate courses in those areas.
Publisher: Intellect (UK)
ISBN:
Category : Computers
Languages : en
Pages : 520
Book Description
Presenting research on the computational abilities of connectionist, neural, and neurally inspired systems, this series emphasizes the question of how connectionist or neural network models can be made to perform rapid, short-term types of computation that are useful in higher level cognitive processes. The most recent volumes are directed mainly at researchers in connectionism, analogy, metaphor, and case-based reasoning, but are also suitable for graduate courses in those areas.
Neural Engineering
Author: Chris Eliasmith
Publisher: MIT Press
ISBN: 9780262550604
Category : Computers
Languages : en
Pages : 384
Book Description
A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.
Publisher: MIT Press
ISBN: 9780262550604
Category : Computers
Languages : en
Pages : 384
Book Description
A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.
Neuronal Dynamics
Author: Wulfram Gerstner
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591
Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591
Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Biophysics of Computation
Author: Christof Koch
Publisher: Oxford University Press
ISBN: 0195181999
Category : Medical
Languages : en
Pages : 587
Book Description
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.
Publisher: Oxford University Press
ISBN: 0195181999
Category : Medical
Languages : en
Pages : 587
Book Description
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.