Introduction to Intersection Theory in Algebraic Geometry

Introduction to Intersection Theory in Algebraic Geometry PDF Author: William Fulton
Publisher: American Mathematical Soc.
ISBN: 0821807048
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
Introduces some of the main ideas of modern intersection theory, traces their origins in classical geometry and sketches a few typical applications. Suitable for graduate students in mathematics, this book describes the construction and computation of intersection products by means of the geometry of normal cones.

Introduction to Intersection Theory in Algebraic Geometry

Introduction to Intersection Theory in Algebraic Geometry PDF Author: William Fulton
Publisher: American Mathematical Soc.
ISBN: 0821807048
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
Introduces some of the main ideas of modern intersection theory, traces their origins in classical geometry and sketches a few typical applications. Suitable for graduate students in mathematics, this book describes the construction and computation of intersection products by means of the geometry of normal cones.

Intersection Theory

Intersection Theory PDF Author: W. Fulton
Publisher: Springer Science & Business Media
ISBN: 3662024217
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.

3264 and All That

3264 and All That PDF Author: David Eisenbud
Publisher: Cambridge University Press
ISBN: 1107017084
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
3264, the mathematical solution to a question concerning geometric figures.

Hopf Algebras and Their Actions on Rings

Hopf Algebras and Their Actions on Rings PDF Author: Susan Montgomery
Publisher: American Mathematical Soc.
ISBN: 0821807382
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry PDF Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Intersection Homology & Perverse Sheaves

Intersection Homology & Perverse Sheaves PDF Author: Laurenţiu G. Maxim
Publisher: Springer Nature
ISBN: 3030276449
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson–Bernstein–Deligne–Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito’s deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.

Algebraic Geometry

Algebraic Geometry PDF Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511

Get Book Here

Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Introduction to Toric Varieties

Introduction to Toric Varieties PDF Author: William Fulton
Publisher: Princeton University Press
ISBN: 9780691000497
Category : Mathematics
Languages : en
Pages : 174

Get Book Here

Book Description
Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry PDF Author: Serge Lang
Publisher: Courier Dover Publications
ISBN: 048683980X
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

Feynman Motives

Feynman Motives PDF Author: Matilde Marcolli
Publisher: World Scientific
ISBN: 9814271217
Category : Science
Languages : en
Pages : 234

Get Book Here

Book Description
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.