Introduction to Homotopy Theory

Introduction to Homotopy Theory PDF Author: Martin Arkowitz
Publisher: Springer Science & Business Media
ISBN: 144197329X
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Introduction to Homotopy Theory

Introduction to Homotopy Theory PDF Author: Martin Arkowitz
Publisher: Springer Science & Business Media
ISBN: 144197329X
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Introduction to Homotopy Theory

Introduction to Homotopy Theory PDF Author: Paul Selick
Publisher: American Mathematical Soc.
ISBN: 9780821844366
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
Offers a summary for students and non-specialists who are interested in learning the basics of algebraic topology. This book covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, and generalized homology and cohomology operations.

Modern Classical Homotopy Theory

Modern Classical Homotopy Theory PDF Author: Jeffrey Strom
Publisher: American Mathematical Soc.
ISBN: 0821852868
Category : Mathematics
Languages : en
Pages : 862

Get Book Here

Book Description
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Homotopy Type Theory: Univalent Foundations of Mathematics

Homotopy Type Theory: Univalent Foundations of Mathematics PDF Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484

Get Book Here

Book Description


Homotopy Theory: An Introduction to Algebraic Topology

Homotopy Theory: An Introduction to Algebraic Topology PDF Author:
Publisher: Academic Press
ISBN: 0080873804
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Homotopy Theory: An Introduction to Algebraic Topology

An Introduction to Homotopy Theory

An Introduction to Homotopy Theory PDF Author: P. J. Hilton
Publisher:
ISBN: 9780521052658
Category : Mathematics
Languages : en
Pages : 142

Get Book Here

Book Description
Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes.

Motivic Homotopy Theory

Motivic Homotopy Theory PDF Author: Bjorn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 3540458972
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Elements of Homotopy Theory

Elements of Homotopy Theory PDF Author: George W. Whitehead
Publisher: Springer Science & Business Media
ISBN: 1461263182
Category : Mathematics
Languages : en
Pages : 764

Get Book Here

Book Description
As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.

Handbook of Homotopy Theory

Handbook of Homotopy Theory PDF Author: Haynes Miller
Publisher: CRC Press
ISBN: 1351251600
Category : Mathematics
Languages : en
Pages : 1142

Get Book Here

Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Homotopy Theory

Homotopy Theory PDF Author:
Publisher: Academic Press
ISBN: 0080873162
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
Homotopy Theory