Introduction to Computational Neurobiology and Clustering

Introduction to Computational Neurobiology and Clustering PDF Author: Brunello Tirozzi
Publisher: World Scientific
ISBN: 9812705392
Category : Science
Languages : en
Pages : 242

Get Book Here

Book Description
This volume provides students with the necessary tools to better understand the fields of neurobiological modeling, cluster analysis of proteins and genes. The theory is explained starting from the beginning and in the most elementary terms, there are many exercises solved and not useful for the understanding of the theory. The exercises are specially adapted for training and many useful Matlab programs are included, easily understood and generalizable to more complex situations. This self-contained text is particularly suitable for an undergraduate course of biology and biotechnology. New results are also provided for researchers such as the description and applications of the Kohonen neural networks to gene classification and protein classification with back propagation neutral networks.

Introduction to Computational Neurobiology and Clustering

Introduction to Computational Neurobiology and Clustering PDF Author: Brunello Tirozzi
Publisher: World Scientific
ISBN: 9812705392
Category : Science
Languages : en
Pages : 242

Get Book Here

Book Description
This volume provides students with the necessary tools to better understand the fields of neurobiological modeling, cluster analysis of proteins and genes. The theory is explained starting from the beginning and in the most elementary terms, there are many exercises solved and not useful for the understanding of the theory. The exercises are specially adapted for training and many useful Matlab programs are included, easily understood and generalizable to more complex situations. This self-contained text is particularly suitable for an undergraduate course of biology and biotechnology. New results are also provided for researchers such as the description and applications of the Kohonen neural networks to gene classification and protein classification with back propagation neutral networks.

Introduction to Computational Neurobiology and Clustering

Introduction to Computational Neurobiology and Clustering PDF Author: Brunello Tirozzi
Publisher: World Scientific
ISBN: 9812771271
Category : Medical
Languages : en
Pages : 242

Get Book Here

Book Description
This volume provides students with the necessary tools to better understand the fields of neurobiological modeling, cluster analysis of proteins and genes. The theory is explained starting from the beginning and in the most elementary terms, there are many exercises solved and not useful for the understanding of the theory. The exercises are specially adapted for training and many useful Matlab programs are included, easily understood and generalizable to more complex situations. This self-contained text is particularly suitable for an undergraduate course of biology and biotechnology. New results are also provided for researchers such as the description and applications of the Kohonen neural networks to gene classification and protein classification with back propagation neutral networks.

Machine Learning for Neuroscience

Machine Learning for Neuroscience PDF Author: Chuck Easttom
Publisher: CRC Press
ISBN: 1000907147
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
This book addresses the growing need for machine learning and data mining in neuroscience. The book offers a basic overview of the neuroscience, machine learning and the required math and programming necessary to develop reliable working models. The material is presented in a easy to follow user-friendly manner and is replete with fully working machine learning code. Machine Learning for Neuroscience: A Systematic Approach, tackles the needs of neuroscience researchers and practitioners that have very little training relevant to machine learning. The first section of the book provides an overview of necessary topics in order to delve into machine learning, including basic linear algebra and Python programming. The second section provides an overview of neuroscience and is directed to the computer science oriented readers. The section covers neuroanatomy and physiology, cellular neuroscience, neurological disorders and computational neuroscience. The third section of the book then delves into how to apply machine learning and data mining to neuroscience and provides coverage of artificial neural networks (ANN), clustering, and anomaly detection. The book contains fully working code examples with downloadable working code. It also contains lab assignments and quizzes, making it appropriate for use as a textbook. The primary audience is neuroscience researchers who need to delve into machine learning, programmers assigned neuroscience related machine learning projects and students studying methods in computational neuroscience.

Advanced Data Analysis in Neuroscience

Advanced Data Analysis in Neuroscience PDF Author: Daniel Durstewitz
Publisher: Springer
ISBN: 3319599763
Category : Medical
Languages : en
Pages : 308

Get Book Here

Book Description
This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck

Computational Explorations in Cognitive Neuroscience

Computational Explorations in Cognitive Neuroscience PDF Author: Randall C. O'Reilly
Publisher: MIT Press
ISBN: 9780262650540
Category : Medical
Languages : en
Pages : 540

Get Book Here

Book Description
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.

Lectures in Supercomputational Neuroscience

Lectures in Supercomputational Neuroscience PDF Author: Peter Graben
Publisher: Springer
ISBN: 3540731598
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
Written from the physicist’s perspective, this book introduces computational neuroscience with in-depth contributions by system neuroscientists. The authors set forth a conceptual model for complex networks of neurons that incorporates important features of the brain. The computational implementation on supercomputers, discussed in detail, enables you to adapt the algorithm for your own research. Worked-out examples of applications are provided.

Data-Driven Computational Neuroscience

Data-Driven Computational Neuroscience PDF Author: Concha Bielza
Publisher: Cambridge University Press
ISBN: 1108639046
Category : Computers
Languages : en
Pages : 734

Get Book Here

Book Description
Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered.

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience PDF Author: Paul Miller
Publisher: MIT Press
ISBN: 0262347563
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

Introducing Computation to Neuroscience

Introducing Computation to Neuroscience PDF Author: Ad Aertsen
Publisher: Springer Nature
ISBN: 3030874478
Category : Medical
Languages : en
Pages : 555

Get Book Here

Book Description
This book brings together a selection of papers by George Gerstein, representing his long-term endeavor of making neuroscience into a more rigorous science inspired by physics, where he had his roots. Professor Gerstein was many years ahead of the field, consistently striving for quantitative analyses, mechanistic models, and conceptual clarity. In doing so, he pioneered Computational Neuroscience, many years before the term itself was born. The overarching goal of George Gerstein’s research was to understand the functional organization of neuronal networks in the brain. The editors of this book have compiled a selection of George Gerstein’s many seminal contributions to neuroscience--be they experimental, theoretical or computational--into a single, comprehensive volume .The aim is to provide readers with a fresh introduction of these various concepts in the original literature. The volume is organized in a series of chapters by subject, ordered in time, each one containing one or more of George Gerstein’s papers.

Space-Time Computing with Temporal Neural Networks

Space-Time Computing with Temporal Neural Networks PDF Author: James E. Smith
Publisher: Morgan & Claypool Publishers
ISBN: 1627058907
Category : Computers
Languages : en
Pages : 245

Get Book Here

Book Description
Understanding and implementing the brain's computational paradigm is the one true grand challenge facing computer researchers. Not only are the brain's computational capabilities far beyond those of conventional computers, its energy efficiency is truly remarkable. This book, written from the perspective of a computer designer and targeted at computer researchers, is intended to give both background and lay out a course of action for studying the brain's computational paradigm. It contains a mix of concepts and ideas drawn from computational neuroscience, combined with those of the author. As background, relevant biological features are described in terms of their computational and communication properties. The brain's neocortex is constructed of massively interconnected neurons that compute and communicate via voltage spikes, and a strong argument can be made that precise spike timing is an essential element of the paradigm. Drawing from the biological features, a mathematics-based computational paradigm is constructed. The key feature is spiking neurons that perform communication and processing in space-time, with emphasis on time. In these paradigms, time is used as a freely available resource for both communication and computation. Neuron models are first discussed in general, and one is chosen for detailed development. Using the model, single-neuron computation is first explored. Neuron inputs are encoded as spike patterns, and the neuron is trained to identify input pattern similarities. Individual neurons are building blocks for constructing larger ensembles, referred to as "columns". These columns are trained in an unsupervised manner and operate collectively to perform the basic cognitive function of pattern clustering. Similar input patterns are mapped to a much smaller set of similar output patterns, thereby dividing the input patterns into identifiable clusters. Larger cognitive systems are formed by combining columns into a hierarchical architecture. These higher level architectures are the subject of ongoing study, and progress to date is described in detail in later chapters. Simulation plays a major role in model development, and the simulation infrastructure developed by the author is described.