Introduction to Averaging Dynamics over Networks

Introduction to Averaging Dynamics over Networks PDF Author: Fabio Fagnani
Publisher: Springer
ISBN: 3319680226
Category : Technology & Engineering
Languages : en
Pages : 145

Get Book Here

Book Description
This book deals with averaging dynamics, a paradigmatic example of network based dynamics in multi-agent systems. The book presents all the fundamental results on linear averaging dynamics, proposing a unified and updated viewpoint of many models and convergence results scattered in the literature. Starting from the classical evolution of the powers of a fixed stochastic matrix, the text then considers more general evolutions of products of a sequence of stochastic matrices, either deterministic or randomized. The theory needed for a full understanding of the models is constructed without assuming any knowledge of Markov chains or Perron–Frobenius theory. Jointly with their analysis of the convergence of averaging dynamics, the authors derive the properties of stochastic matrices. These properties are related to the topological structure of the associated graph, which, in the book’s perspective, represents the communication between agents. Special attention is paid to how these properties scale as the network grows in size. Finally, the understanding of stochastic matrices is applied to the study of other problems in multi-agent coordination: averaging with stubborn agents and estimation from relative measurements. The dynamics described in the book find application in the study of opinion dynamics in social networks, of information fusion in sensor networks, and of the collective motion of animal groups and teams of unmanned vehicles. Introduction to Averaging Dynamics over Networks will be of material interest to researchers in systems and control studying coordinated or distributed control, networked systems or multiagent systems and to graduate students pursuing courses in these areas.

Introduction to Averaging Dynamics over Networks

Introduction to Averaging Dynamics over Networks PDF Author: Fabio Fagnani
Publisher: Springer
ISBN: 3319680226
Category : Technology & Engineering
Languages : en
Pages : 145

Get Book Here

Book Description
This book deals with averaging dynamics, a paradigmatic example of network based dynamics in multi-agent systems. The book presents all the fundamental results on linear averaging dynamics, proposing a unified and updated viewpoint of many models and convergence results scattered in the literature. Starting from the classical evolution of the powers of a fixed stochastic matrix, the text then considers more general evolutions of products of a sequence of stochastic matrices, either deterministic or randomized. The theory needed for a full understanding of the models is constructed without assuming any knowledge of Markov chains or Perron–Frobenius theory. Jointly with their analysis of the convergence of averaging dynamics, the authors derive the properties of stochastic matrices. These properties are related to the topological structure of the associated graph, which, in the book’s perspective, represents the communication between agents. Special attention is paid to how these properties scale as the network grows in size. Finally, the understanding of stochastic matrices is applied to the study of other problems in multi-agent coordination: averaging with stubborn agents and estimation from relative measurements. The dynamics described in the book find application in the study of opinion dynamics in social networks, of information fusion in sensor networks, and of the collective motion of animal groups and teams of unmanned vehicles. Introduction to Averaging Dynamics over Networks will be of material interest to researchers in systems and control studying coordinated or distributed control, networked systems or multiagent systems and to graduate students pursuing courses in these areas.

Convergence Rate of Distributed Averaging Dynamics and Optimization in Networks

Convergence Rate of Distributed Averaging Dynamics and Optimization in Networks PDF Author: Angelia Nedić
Publisher:
ISBN: 9781680830408
Category : Computers
Languages : en
Pages : 116

Get Book Here

Book Description
This is the first tutorial to give such a concise and accessible introduction to game theory. It will be of use to all students, practitioners, and researchers looking to understand the basic concepts, models, and applications.

Distributed Averaging Dynamics and Optimization Over Random Networks

Distributed Averaging Dynamics and Optimization Over Random Networks PDF Author: Adel Aghajan Abdollah
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Get Book Here

Book Description
In this thesis, we study Distributed Averaging Dynamics and its main application, i.e. Distributed Optimization. More specifically, the results of this thesis can be divided into two main parts: 1) Ergodicity of distributed averaging dynamics, and 2) Distributed optimization over dependent random networks. First, we study both discrete-time and continuous-time time-varying distributed averaging dynamics. We show a necessary and a sufficient condition for ergodicity of such dynamics. We extend a well-known result in ergodicity of time-homogeneous (time-invariant) averaging dynamics and we show that ergodicity of a dynamics necessitates that its (directed) infinite flow graph has a spanning rooted tree. Then, we show that if groups of agents are connected using a rooted tree and the averaging dynamics restricted to each group is P* and ergodic, then the dynamics over the whole networks is ergodic. In particular, this provides a general condition for convergence of consensus dynamics where groups of agents capable of reaching consensus follow each other on a time-varying network. Then, we study the averaging-based distributed optimization solvers over random networks for both convex and strongly convex functions. We show a general result on the convergence of such schemes for a broad class of dependent weight-matrix sequences. In addition to implying many of the previously known results on this domain, our work shows the robustness of distributed optimization results to link-failure. Also, it provides a new tool for synthesizing distributed optimization algorithms. To prove our main theorems, we establish new results on the rate of convergence analysis of averaging dynamics and non-averaging dynamics over (dependent) random networks. These secondary results, along with the required martingale-type results to establish them, might be of interest to broader research endeavors in distributed computation over random networks.

Product of Random Stochastic Matrices and Distributed Averaging

Product of Random Stochastic Matrices and Distributed Averaging PDF Author: Behrouz Touri
Publisher: Springer Science & Business Media
ISBN: 3642280021
Category : Computers
Languages : en
Pages : 152

Get Book Here

Book Description
The thesis deals with averaging dynamics in a multiagent networked system, which is a main mechanism for diffusing the information over such networks. It arises in a wide range of applications in engineered physical networks (such as mobile communication and sensor networks), as well as social and economic networks. The thesis provides in depth study of stability and other phenomena characterizing the limiting behavior of both deterministic and random averaging dynamics. By developing new concepts, and using the tools from dynamic system theory and non-negative matrix theory, several novel fundamental results are rigorously developed. These contribute significantly to our understanding of averaging dynamics as well as to non-negative random matrix theory. The exposition, although highly rigorous and technical, is elegant and insightful, and accompanied with numerous illustrative examples, which makes this thesis work easily accessible to those just entering this field and will also be much appreciated by experts in the field.

Opinion Dynamics and the Evolution of Social Power in Social Networks

Opinion Dynamics and the Evolution of Social Power in Social Networks PDF Author: Mengbin Ye
Publisher: Springer
ISBN: 3030106063
Category : Technology & Engineering
Languages : en
Pages : 209

Get Book Here

Book Description
This book uses rigorous mathematical analysis to advance opinion dynamics models for social networks in three major directions. First, a novel model is proposed to capture how a discrepancy between an individual’s private and expressed opinions can develop due to social pressures that arise in group situations or through extremists deliberately shaping public opinion. Detailed theoretical analysis of the final opinion distribution is followed by use of the model to study Asch’s seminal experiments on conformity, and the phenomenon of pluralistic ignorance. Second, the DeGroot-Friedkin model for evolution of an individual’s social power (self-confidence) is developed in a number of directions. The key result establishes that an individual’s initial social power is forgotten exponentially fast, even when the network changes over time; eventually, an individual’s social power depends only on the (changing) network structure. Last, a model for the simultaneous discussion of multiple logically interdependent topics is proposed. To ensure that a consensus across the opinions of all individuals is achieved, it turns out that the interpersonal interactions must be weaker than an individual’s introspective cognitive process for establishing logical consistency among the topics. Otherwise, the individual may experience cognitive overload and the opinion system becomes unstable. Conclusions of interest to control engineers, social scientists, and researchers from other relevant disciplines are discussed throughout the thesis with support from both social science and control literature.

Distributed Averaging in Dynamic Networks

Distributed Averaging in Dynamic Networks PDF Author: Shreevatsa Rajagopalan
Publisher:
ISBN:
Category :
Languages : en
Pages : 40

Get Book Here

Book Description
The question of computing average of numbers present at nodes in a network in a distributed manner using gossip or message-passing algorithms has been of great recent interest across disciplines -- algorithms, control and robotics, estimation, social networks, etc. It has served as a non-trivial, representative model for an important class of questions arising in these disciplines and thus guiding intellectual progress over the past few decades. In most of these applications, there is inherent dynamics present, such as changes in the network topology in terms of communication links, changes in the values of numbers present at nodes, and nodes joining or leaving. The effect of dynamics in terms of communication links on the design and analysis of algorithms for averaging is reasonably well understood, e.g. [14][2][8][4]. However, little is known about the effect of other forms of dynamics. In this thesis, we study the effect of such types of dynamics in the context of maintaining average in the network. Specifically, we design dynamics-aware message-passing or gossip algorithm that maintains good estimate of average in presence of continuous change in numbers at nodes. Clearly, in presence of such dynamics the best one can hope for is a tradeoff between the accuracy of each node's estimate of the average at each time instant and the rate of dynamics. For our algorithm, we characterize this tradeoff and establish it to be near optimal. The dependence of the accuracy of the algorithm on the rate of dynamics as well as on the underlying graph structure is quantified.

Discrete Networked Dynamic Systems

Discrete Networked Dynamic Systems PDF Author: Magdi S. Mahmoud
Publisher: Academic Press
ISBN: 012823699X
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book Here

Book Description
Discrete Networked Dynamic Systems: Analysis and Performance provides a high-level treatment of a general class of linear discrete-time dynamic systems interconnected over an information network, exchanging relative state measurements or output measurements. It presents a systematic analysis of the material and provides an account to the math development in a unified way. The topics in this book are structured along four dimensions: Agent, Environment, Interaction, and Organization, while keeping global (system-centered) and local (agent-centered) viewpoints. The focus is on the wide-sense consensus problem in discrete networked dynamic systems. The authors rely heavily on algebraic graph theory and topology to derive their results. It is known that graphs play an important role in the analysis of interactions between multiagent/distributed systems. Graph-theoretic analysis provides insight into how topological interactions play a role in achieving coordination among agents. Numerous types of graphs exist in the literature, depending on the edge set of G. A simple graph has no self-loop or edges. Complete graphs are simple graphs with an edge connecting any pair of vertices. The vertex set in a bipartite graph can be partitioned into disjoint non-empty vertex sets, whereby there is an edge connecting every vertex in one set to every vertex in the other set. Random graphs have fixed vertex sets, but the edge set exhibits stochastic behavior modeled by probability functions. Much of the studies in coordination control are based on deterministic/fixed graphs, switching graphs, and random graphs. This book addresses advanced analytical tools for characterization control, estimation and design of networked dynamic systems over fixed, probabilistic and time-varying graphs Provides coherent results on adopting a set-theoretic framework for critically examining problems of the analysis, performance and design of discrete distributed systems over graphs Deals with both homogeneous and heterogeneous systems to guarantee the generality of design results

Mathematics of Epidemics on Networks

Mathematics of Epidemics on Networks PDF Author: István Z. Kiss
Publisher: Springer
ISBN: 3319508067
Category : Mathematics
Languages : en
Pages : 423

Get Book Here

Book Description
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.

Applications of Nonlinear Dynamics

Applications of Nonlinear Dynamics PDF Author: Visarath In
Publisher: Springer Science & Business Media
ISBN: 3540856323
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.

Discrete Networked Dynamic Systems

Discrete Networked Dynamic Systems PDF Author: Magdi S. Mahmoud
Publisher: Academic Press
ISBN: 0128236981
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
Discrete Networked Dynamic Systems: Analysis and Performance provides a high-level treatment of a general class of linear discrete-time dynamic systems interconnected over an information network, exchanging relative state measurements or output measurements. It presents a systematic analysis of the material and provides an account to the math development in a unified way. The topics in this book are structured along four dimensions: Agent, Environment, Interaction, and Organization, while keeping global (system-centered) and local (agent-centered) viewpoints. The focus is on the wide-sense consensus problem in discrete networked dynamic systems. The authors rely heavily on algebraic graph theory and topology to derive their results. It is known that graphs play an important role in the analysis of interactions between multiagent/distributed systems. Graph-theoretic analysis provides insight into how topological interactions play a role in achieving coordination among agents. Numerous types of graphs exist in the literature, depending on the edge set of G. A simple graph has no self-loop or edges. Complete graphs are simple graphs with an edge connecting any pair of vertices. The vertex set in a bipartite graph can be partitioned into disjoint non-empty vertex sets, whereby there is an edge connecting every vertex in one set to every vertex in the other set. Random graphs have fixed vertex sets, but the edge set exhibits stochastic behavior modeled by probability functions. Much of the studies in coordination control are based on deterministic/fixed graphs, switching graphs, and random graphs. This book addresses advanced analytical tools for characterization control, estimation and design of networked dynamic systems over fixed, probabilistic and time-varying graphs Provides coherent results on adopting a set-theoretic framework for critically examining problems of the analysis, performance and design of discrete distributed systems over graphs Deals with both homogeneous and heterogeneous systems to guarantee the generality of design results