Introducing Sparsity Into Selection Index Methodology with Applications to High-throughput Phenotyping and Genomic Prediction

Introducing Sparsity Into Selection Index Methodology with Applications to High-throughput Phenotyping and Genomic Prediction PDF Author: Marco Antonio Lopez Cruz
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 149

Get Book Here

Book Description
Research in plant and animal breeding has been largely focused on the development of methods for a more efficient selection by altering the factors that affect genetic progress: selection intensity, selection accuracy, genetic variance, and length of the breeding cycle. Most of the breeding efforts have been primarily towards increasing selection accuracy and reducing the breeding cycle.Genomic selection has been successfully adopted by many public and private breeding organizations. Over years, these institutions have developed and accumulated large volumes of genomic data linked to phenotypes from multiple populations and multiple generations. This data abundance offers the opportunity to revolutionize genetic research. However, these data sets are also increasingly heterogeneous, with many subpopulations and multiple generations represented in the data. This translates into potentially heterogeneous allele frequencies and different LD patterns, thus leading to SNP-effect heterogeneity.Genomic selection methods were developed with reference to homogeneous populations in which SNP-effects are assumed constant across the whole population. These methods are not necessarily optimal for the contemporary available data sets for model training. Therefore, a first focus of this dissertation is on developing novel methods that can leverage the large-scale of modern data sets while coping with the heterogeneity and complexity of this type of data.In recent years, there have also been important advances in high-throughput phenotyping (HTP) technologies that can generate large volumes of data at multiple time-points of a crop. Examples of this include hyper-spectral imaging technologies that can capture the reflectance of electromagnetic power by crops at potentially thousands of wavelengths. The integration of HTP in genetic evaluations represents a great opportunity to further advance plant breeding; however, the high-dimensional nature of HTP data poses important challenges. Therefore, a second focus of this dissertation is on the development of a novel approach to efficiently incorporate HTP data for breeding values prediction.Thus, this dissertation aims to contribute novel methods that can improve the accuracy of genomic prediction by optimizing the use of large, potentially heterogeneous, genomic data sets and by enabling the integration of HTP data. We present a novel statistical approach that combines the standard selection index methodology with variable-selection methods commonly used in machine learning and statistics, and developed software to implement the method. Our approach offers solutions to both genomic selection with potentially highly heterogeneous genomic data sets, and the integration of HTP in genetic evaluations.

Introducing Sparsity Into Selection Index Methodology with Applications to High-throughput Phenotyping and Genomic Prediction

Introducing Sparsity Into Selection Index Methodology with Applications to High-throughput Phenotyping and Genomic Prediction PDF Author: Marco Antonio Lopez Cruz
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 149

Get Book Here

Book Description
Research in plant and animal breeding has been largely focused on the development of methods for a more efficient selection by altering the factors that affect genetic progress: selection intensity, selection accuracy, genetic variance, and length of the breeding cycle. Most of the breeding efforts have been primarily towards increasing selection accuracy and reducing the breeding cycle.Genomic selection has been successfully adopted by many public and private breeding organizations. Over years, these institutions have developed and accumulated large volumes of genomic data linked to phenotypes from multiple populations and multiple generations. This data abundance offers the opportunity to revolutionize genetic research. However, these data sets are also increasingly heterogeneous, with many subpopulations and multiple generations represented in the data. This translates into potentially heterogeneous allele frequencies and different LD patterns, thus leading to SNP-effect heterogeneity.Genomic selection methods were developed with reference to homogeneous populations in which SNP-effects are assumed constant across the whole population. These methods are not necessarily optimal for the contemporary available data sets for model training. Therefore, a first focus of this dissertation is on developing novel methods that can leverage the large-scale of modern data sets while coping with the heterogeneity and complexity of this type of data.In recent years, there have also been important advances in high-throughput phenotyping (HTP) technologies that can generate large volumes of data at multiple time-points of a crop. Examples of this include hyper-spectral imaging technologies that can capture the reflectance of electromagnetic power by crops at potentially thousands of wavelengths. The integration of HTP in genetic evaluations represents a great opportunity to further advance plant breeding; however, the high-dimensional nature of HTP data poses important challenges. Therefore, a second focus of this dissertation is on the development of a novel approach to efficiently incorporate HTP data for breeding values prediction.Thus, this dissertation aims to contribute novel methods that can improve the accuracy of genomic prediction by optimizing the use of large, potentially heterogeneous, genomic data sets and by enabling the integration of HTP data. We present a novel statistical approach that combines the standard selection index methodology with variable-selection methods commonly used in machine learning and statistics, and developed software to implement the method. Our approach offers solutions to both genomic selection with potentially highly heterogeneous genomic data sets, and the integration of HTP in genetic evaluations.

Genetic Data Analysis for Plant and Animal Breeding

Genetic Data Analysis for Plant and Animal Breeding PDF Author: Fikret Isik
Publisher: Springer
ISBN: 3319551779
Category : Science
Languages : en
Pages : 409

Get Book Here

Book Description
This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.

Rice Genomics, Genetics and Breeding

Rice Genomics, Genetics and Breeding PDF Author: Takuji Sasaki
Publisher: Springer
ISBN: 9811074615
Category : Science
Languages : en
Pages : 556

Get Book Here

Book Description
This book presents the latest advances in rice genomics, genetics and breeding, with a special focus on their importance for rice biology and how they are breathing new life into traditional genetics. Rice is the main staple food for more than half of the world’s population. Accordingly, sustainable rice production is a crucial issue, particularly in Asia and Africa, where the population continues to grow at an alarming rate. The book’s respective chapters offer new and timely perspectives on the synergistic effects of genomics and genetics in novel rice breeding approaches, which can help address the urgent issue of providing enough food for a global population that is expected to reach 9 billion by 2050.

Artificial Intelligence Applications in Specialty Crops

Artificial Intelligence Applications in Specialty Crops PDF Author: Yiannis Ampatzidis
Publisher: Frontiers Media SA
ISBN: 2889745570
Category : Science
Languages : en
Pages : 444

Get Book Here

Book Description


Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2 PDF Author: M. Arif Wani
Publisher: Springer
ISBN: 9789811567582
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Statistical Learning with Sparsity

Statistical Learning with Sparsity PDF Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354

Get Book Here

Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Genotype by Environment Interaction

Genotype by Environment Interaction PDF Author: Manjit S. Kang
Publisher: CRC-Press
ISBN: 9780849340031
Category : Science
Languages : en
Pages : 416

Get Book Here

Book Description
Genotype-by-Environment Interaction (GEI) is a prevalent issue among crop farmers, plant breeders, geneticists, and production agronomists. This book brings together contributions from expert plant breeders and quantitative geneticists to better understand the relationship between crop performance and environment. This information can reduce the cost of extensive genotype evaluation by eliminating unnecessary testing sites and by fine-tuning breeding programs. Molecular aspects of GEI are discussed for the first time and key bibliographical references on GEI are included in an appendix.

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Multivariate Statistical Machine Learning Methods for Genomic Prediction PDF Author: Osval Antonio Montesinos López
Publisher: Springer Nature
ISBN: 3030890104
Category : Technology & Engineering
Languages : en
Pages : 707

Get Book Here

Book Description
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Linear Models for the Prediction of Animal Breeding Values

Linear Models for the Prediction of Animal Breeding Values PDF Author: R. A. Mrode
Publisher: Cab International
ISBN: 9781845939816
Category : Technology & Engineering
Languages : en
Pages : 343

Get Book Here

Book Description
The prediction of producing desirable traits in offspring such as increased growth rate or superior meat, milk and wool production is a vital economic tool to the animal scientist. Summarizing the latest developments in genomics relating to animal breeding values and design of breeding programs, this new edition includes models of survival analysis, social interaction and sire and dam models, as well as advancements in the use of SNPs in the computation of genomic breeding values.

Model-Oriented Design of Experiments

Model-Oriented Design of Experiments PDF Author: Valerii V. Fedorov
Publisher: Springer Science & Business Media
ISBN: 1461207037
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
Here, the authors explain the basic ideas so as to generate interest in modern problems of experimental design. The topics discussed include designs for inference based on nonlinear models, designs for models with random parameters and stochastic processes, designs for model discrimination and incorrectly specified (contaminated) models, as well as examples of designs in functional spaces. Since the authors avoid technical details, the book assumes only a moderate background in calculus, matrix algebra, and statistics. However, at many places, hints are given as to how readers may enhance and adopt the basic ideas for advanced problems or applications. This allows the book to be used for courses at different levels, as well as serving as a useful reference for graduate students and researchers in statistics and engineering.