Author: Agnieszka Jędrzejewska
Publisher: Springer Nature
ISBN: 3031331877
Category : Technology & Engineering
Languages : en
Pages : 1242
Book Description
This book highlights the latest advances, innovations, and applications in cement-based materials (CBM) and concrete structures, as presented by leading international researchers and engineers at the International RILEM Conference on synergizing expertise toward sustainability and robustness of CBM and concrete structures (SynerCrete), held in Milos Island, Greece, on June 14-16, 2023. The aim of the conference was to discuss and arouse progress in research, development, and application of CBM and structural concrete through combination of expertise from distinct fields of knowledge, such as performance-based design, 3D modeling for analysis/design, building information modeling, and even robotics, while keeping focus on multiscale approaches at time and spatial levels. It covers a diverse range of topics concerning alternative concrete formulations for adaptation to climate change, performance-based and multiphysics/multiscale design and innovative testing, structural health monitoring and maintenance management, integral BIM-based planning, and resource-responsible building. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations. The two volumes encompass more than 200 original contributions in the field.
International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures
Author: Agnieszka Jędrzejewska
Publisher: Springer Nature
ISBN: 3031331877
Category : Technology & Engineering
Languages : en
Pages : 1242
Book Description
This book highlights the latest advances, innovations, and applications in cement-based materials (CBM) and concrete structures, as presented by leading international researchers and engineers at the International RILEM Conference on synergizing expertise toward sustainability and robustness of CBM and concrete structures (SynerCrete), held in Milos Island, Greece, on June 14-16, 2023. The aim of the conference was to discuss and arouse progress in research, development, and application of CBM and structural concrete through combination of expertise from distinct fields of knowledge, such as performance-based design, 3D modeling for analysis/design, building information modeling, and even robotics, while keeping focus on multiscale approaches at time and spatial levels. It covers a diverse range of topics concerning alternative concrete formulations for adaptation to climate change, performance-based and multiphysics/multiscale design and innovative testing, structural health monitoring and maintenance management, integral BIM-based planning, and resource-responsible building. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations. The two volumes encompass more than 200 original contributions in the field.
Publisher: Springer Nature
ISBN: 3031331877
Category : Technology & Engineering
Languages : en
Pages : 1242
Book Description
This book highlights the latest advances, innovations, and applications in cement-based materials (CBM) and concrete structures, as presented by leading international researchers and engineers at the International RILEM Conference on synergizing expertise toward sustainability and robustness of CBM and concrete structures (SynerCrete), held in Milos Island, Greece, on June 14-16, 2023. The aim of the conference was to discuss and arouse progress in research, development, and application of CBM and structural concrete through combination of expertise from distinct fields of knowledge, such as performance-based design, 3D modeling for analysis/design, building information modeling, and even robotics, while keeping focus on multiscale approaches at time and spatial levels. It covers a diverse range of topics concerning alternative concrete formulations for adaptation to climate change, performance-based and multiphysics/multiscale design and innovative testing, structural health monitoring and maintenance management, integral BIM-based planning, and resource-responsible building. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations. The two volumes encompass more than 200 original contributions in the field.
International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures
Author: Agnieszka Jędrzejewska
Publisher: Springer Nature
ISBN: 3031332113
Category : Technology & Engineering
Languages : en
Pages : 1363
Book Description
This book highlights the latest advances, innovations, and applications in cement-based materials (CBM) and concrete structures, as presented by leading international researchers and engineers at the International RILEM Conference on synergizing expertise toward sustainability and robustness of CBM and concrete structures (SynerCrete), held in Milos Island, Greece, on June 14-16, 2023. The aim of the conference was to discuss and arouse progress in research, development, and application of CBM and structural concrete through combination of expertise from distinct fields of knowledge, such as performance-based design, 3D modeling for analysis/design, building information modeling, and even robotics, while keeping focus on multiscale approaches at time and spatial levels. It covers a diverse range of topics concerning alternative concrete formulations for adaptation to climate change, performance-based and multiphysics/multiscale design and innovative testing, structural health monitoring and maintenance management, integral BIM-based planning, and resource-responsible building. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations. The two volumes encompass more than 200 original contributions in the field.
Publisher: Springer Nature
ISBN: 3031332113
Category : Technology & Engineering
Languages : en
Pages : 1363
Book Description
This book highlights the latest advances, innovations, and applications in cement-based materials (CBM) and concrete structures, as presented by leading international researchers and engineers at the International RILEM Conference on synergizing expertise toward sustainability and robustness of CBM and concrete structures (SynerCrete), held in Milos Island, Greece, on June 14-16, 2023. The aim of the conference was to discuss and arouse progress in research, development, and application of CBM and structural concrete through combination of expertise from distinct fields of knowledge, such as performance-based design, 3D modeling for analysis/design, building information modeling, and even robotics, while keeping focus on multiscale approaches at time and spatial levels. It covers a diverse range of topics concerning alternative concrete formulations for adaptation to climate change, performance-based and multiphysics/multiscale design and innovative testing, structural health monitoring and maintenance management, integral BIM-based planning, and resource-responsible building. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations. The two volumes encompass more than 200 original contributions in the field.
Proceedings of the RILEM Spring Convention and Conference 2024
Author: Liberato Ferrara
Publisher: Springer Nature
ISBN: 3031702778
Category :
Languages : en
Pages : 560
Book Description
Publisher: Springer Nature
ISBN: 3031702778
Category :
Languages : en
Pages : 560
Book Description
Transforming Construction: Advances in Fiber Reinforced Concrete
Author: Viktor Mechtcherine
Publisher: Springer Nature
ISBN: 3031701453
Category :
Languages : en
Pages : 872
Book Description
Publisher: Springer Nature
ISBN: 3031701453
Category :
Languages : en
Pages : 872
Book Description
Sustainable Concrete Materials and Structures
Author: Ashraf Ashour
Publisher: Elsevier
ISBN: 0443156735
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Sustainable Concrete Materials and Structures focuses on recent research progress and innovations in this important field of research. All aspects of the technical routes to sustainable concrete and structures are discussed in detail. These include recent findings on sustainable concrete production and structural design and construction. Low-carbon cement, sustainable concrete mix design, durability, and structural applications are discussed in detail. Emphasis is placed on how to bring some of the innovations in concrete technology closer to market. Information on techno-economic analysis, economy of scale, and the supply chain of sustainable concrete is also addressed. The book will be an essential reference resource for academic and industrial researchers working in civil engineering, material science, chemical engineering, and the development and manufacture of construction materials. - Provides a comprehensive collection of technical reviews on the latest advancements in sustainable concrete materials and structures - Presents state-of-the-art research on preparation, production, processing, and implementation techniques for sustainable concrete materials and structures - Features techno-economic analysis for each technology discussed - Covers lifecycle assessment, the Circular Economy and end of life of concrete structures - Includes industry case studies on implementation
Publisher: Elsevier
ISBN: 0443156735
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Sustainable Concrete Materials and Structures focuses on recent research progress and innovations in this important field of research. All aspects of the technical routes to sustainable concrete and structures are discussed in detail. These include recent findings on sustainable concrete production and structural design and construction. Low-carbon cement, sustainable concrete mix design, durability, and structural applications are discussed in detail. Emphasis is placed on how to bring some of the innovations in concrete technology closer to market. Information on techno-economic analysis, economy of scale, and the supply chain of sustainable concrete is also addressed. The book will be an essential reference resource for academic and industrial researchers working in civil engineering, material science, chemical engineering, and the development and manufacture of construction materials. - Provides a comprehensive collection of technical reviews on the latest advancements in sustainable concrete materials and structures - Presents state-of-the-art research on preparation, production, processing, and implementation techniques for sustainable concrete materials and structures - Features techno-economic analysis for each technology discussed - Covers lifecycle assessment, the Circular Economy and end of life of concrete structures - Includes industry case studies on implementation
Smart & Sustainable Infrastructure: Building a Greener Tomorrow
Author: Nemkumar Banthia
Publisher: Springer Nature
ISBN: 3031533895
Category :
Languages : en
Pages : 1210
Book Description
Publisher: Springer Nature
ISBN: 3031533895
Category :
Languages : en
Pages : 1210
Book Description
Reuse of Plastic Waste in Eco-efficient Concrete
Author: Fernando Pacheco-Torgal
Publisher: Elsevier
ISBN: 0443138117
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Plastic pollution is a complex environmental problem. The use of recycled plastics in the modification of concrete materials has a dominant role to play in the move towards sustainable construction. Reuse of Plastic Waste in Eco-efficient Concrete presents the latest research findings on the application and use of recycled plastic waste in sustainable construction. Divided over four parts, the chapters cover various techniques for processing and separation of plastic wastes; use of recycled plastics as aggregates in modified concrete; as well as lightweight reinforced concrete applications too. There is also an entire section dedicated to asphalt mixtures. The book provides technological solutions on how recycled plastic wastes can be applied in concrete manufacturing. It will be a valuable reference source for academic and industrial researchers who are working with waste materials and the use of recycled plastics in concrete, as well as for civil and structural engineers, polymer production technologists, and concrete manufacturers. - Describes the main types of recycled plastics that can be applied in concrete manufacturing - Presents, state-of-the art knowledge on the properties of conventional concrete with recycled plastics - Discusses the technological challenges for concrete manufacturers for mass production of recycled concrete from plastic waste - Covers lifecycle cost analysis, production challenges, and long-term performance analysis
Publisher: Elsevier
ISBN: 0443138117
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Plastic pollution is a complex environmental problem. The use of recycled plastics in the modification of concrete materials has a dominant role to play in the move towards sustainable construction. Reuse of Plastic Waste in Eco-efficient Concrete presents the latest research findings on the application and use of recycled plastic waste in sustainable construction. Divided over four parts, the chapters cover various techniques for processing and separation of plastic wastes; use of recycled plastics as aggregates in modified concrete; as well as lightweight reinforced concrete applications too. There is also an entire section dedicated to asphalt mixtures. The book provides technological solutions on how recycled plastic wastes can be applied in concrete manufacturing. It will be a valuable reference source for academic and industrial researchers who are working with waste materials and the use of recycled plastics in concrete, as well as for civil and structural engineers, polymer production technologists, and concrete manufacturers. - Describes the main types of recycled plastics that can be applied in concrete manufacturing - Presents, state-of-the art knowledge on the properties of conventional concrete with recycled plastics - Discusses the technological challenges for concrete manufacturers for mass production of recycled concrete from plastic waste - Covers lifecycle cost analysis, production challenges, and long-term performance analysis
Cement Based Materials
Author: Hosam El-Din M. Saleh
Publisher: BoD – Books on Demand
ISBN: 1789841534
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.
Publisher: BoD – Books on Demand
ISBN: 1789841534
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.
Creep and Hygrothermal Effects in Concrete Structures
Author: Zdeněk P. Bažant
Publisher: Springer
ISBN: 9402411380
Category : Technology & Engineering
Languages : en
Pages : 960
Book Description
This comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.
Publisher: Springer
ISBN: 9402411380
Category : Technology & Engineering
Languages : en
Pages : 960
Book Description
This comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.
Cementitious Materials
Author: Herbert Pöllmann
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110473720
Category : Science
Languages : en
Pages : 518
Book Description
Aside from water the materials which are used by mankind in highest quantities arecementitious materials and concrete. This book shows how the quality of the technical product depends on mineral phases and their reactions during the hydration and strengthening process. Additives and admixtures infl uence the course of hydration and the properties. Options of reducing the CO2-production in cementitious materials are presented and numerous examples of unhydrous and hydrous phases and their formation conditions are discussed. This editorial work consists of four parts including cement composition and hydration, Special cement and binder mineral phases, Cementitious and binder materials, and Measurement and properties. Every part contains different contributions and covers a broad range within the area. Contents Part I: Cement composition and hydration Diffraction and crystallography applied to anhydrous cements Diffraction and crystallography applied to hydrating cements Synthesis of highly reactive pure cement phases Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements Part II: Special cement and binder mineral phases Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating Setting control of CAC by substituted acetic acids and crystal structures of their calcium salts Crystallography and crystal chemistry of AFm phases related to cement chemistry Part III: Cementitious and binder materials Chemistry, design and application of hybrid alkali activated binders Binding materials based on calcium sulphates Magnesia building material (Sorel cement) – from basics to application New CO2-reduced cementitious systems Composition and properties of ternary binders Part IV: Measurement and properties Characterization of microstructural properties of Portland cements by analytical scanning electron microscopy Correlating XRD data with technological properties No cement production without refractories
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110473720
Category : Science
Languages : en
Pages : 518
Book Description
Aside from water the materials which are used by mankind in highest quantities arecementitious materials and concrete. This book shows how the quality of the technical product depends on mineral phases and their reactions during the hydration and strengthening process. Additives and admixtures infl uence the course of hydration and the properties. Options of reducing the CO2-production in cementitious materials are presented and numerous examples of unhydrous and hydrous phases and their formation conditions are discussed. This editorial work consists of four parts including cement composition and hydration, Special cement and binder mineral phases, Cementitious and binder materials, and Measurement and properties. Every part contains different contributions and covers a broad range within the area. Contents Part I: Cement composition and hydration Diffraction and crystallography applied to anhydrous cements Diffraction and crystallography applied to hydrating cements Synthesis of highly reactive pure cement phases Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements Part II: Special cement and binder mineral phases Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating Setting control of CAC by substituted acetic acids and crystal structures of their calcium salts Crystallography and crystal chemistry of AFm phases related to cement chemistry Part III: Cementitious and binder materials Chemistry, design and application of hybrid alkali activated binders Binding materials based on calcium sulphates Magnesia building material (Sorel cement) – from basics to application New CO2-reduced cementitious systems Composition and properties of ternary binders Part IV: Measurement and properties Characterization of microstructural properties of Portland cements by analytical scanning electron microscopy Correlating XRD data with technological properties No cement production without refractories