Author: Wolfgang Hillebrandt
Publisher: Springer Science & Business Media
ISBN: 9783540789604
Category : Science
Languages : en
Pages : 353
Book Description
Written by experts from geophysics, astrophysics and engineering, this unique book on the interdisciplinary aspects of turbulence offers recent advances in the field and covers everything from the very nature of turbulence to some practical applications.
Interdisciplinary Aspects of Turbulence
Author: Wolfgang Hillebrandt
Publisher: Springer Science & Business Media
ISBN: 9783540789604
Category : Science
Languages : en
Pages : 353
Book Description
Written by experts from geophysics, astrophysics and engineering, this unique book on the interdisciplinary aspects of turbulence offers recent advances in the field and covers everything from the very nature of turbulence to some practical applications.
Publisher: Springer Science & Business Media
ISBN: 9783540789604
Category : Science
Languages : en
Pages : 353
Book Description
Written by experts from geophysics, astrophysics and engineering, this unique book on the interdisciplinary aspects of turbulence offers recent advances in the field and covers everything from the very nature of turbulence to some practical applications.
Interdisciplinary Aspects of Turbulence
Author: Wolfgang Hillebrandt
Publisher: Springer
ISBN: 9783540871637
Category : Science
Languages : en
Pages : 340
Book Description
Written by experts from geophysics, astrophysics and engineering, this unique book on the interdisciplinary aspects of turbulence offers recent advances in the field and covers everything from the very nature of turbulence to some practical applications.
Publisher: Springer
ISBN: 9783540871637
Category : Science
Languages : en
Pages : 340
Book Description
Written by experts from geophysics, astrophysics and engineering, this unique book on the interdisciplinary aspects of turbulence offers recent advances in the field and covers everything from the very nature of turbulence to some practical applications.
Modeling Complex Turbulent Flows
Author: Manuel D. Salas
Publisher: Springer Science & Business Media
ISBN: 9780792355908
Category : Science
Languages : en
Pages : 402
Book Description
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.
Publisher: Springer Science & Business Media
ISBN: 9780792355908
Category : Science
Languages : en
Pages : 402
Book Description
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.
Turbulence
Author: Peter Davidson
Publisher: Oxford University Press, USA
ISBN: 0198722591
Category : Mathematics
Languages : en
Pages : 647
Book Description
This is an advanced textbook on the subject of turbulence, and is suitable for engineers, physical scientists and applied mathematicians. The aim of the book is to bridge the gap between the elementary accounts of turbulence found in undergraduate texts, and the more rigorous monographs on the subject. Throughout, the book combines the maximum of physical insight with the minimum of mathematical detail. Chapters 1 to 5 may be appropriate as background material for an advanced undergraduate or introductory postgraduate course on turbulence, while chapters 6 to 10 may be suitable as background material for an advanced postgraduate course on turbulence, or act as a reference source for professional researchers. This second edition covers a decade of advancement in the field, streamlining the original content while updating the sections where the subject has moved on. The expanded content includes large-scale dynamics, stratified & rotating turbulence, the increased power of direct numerical simulation, two-dimensional turbulence, Magnetohydrodynamics, and turbulence in the core of the Earth
Publisher: Oxford University Press, USA
ISBN: 0198722591
Category : Mathematics
Languages : en
Pages : 647
Book Description
This is an advanced textbook on the subject of turbulence, and is suitable for engineers, physical scientists and applied mathematicians. The aim of the book is to bridge the gap between the elementary accounts of turbulence found in undergraduate texts, and the more rigorous monographs on the subject. Throughout, the book combines the maximum of physical insight with the minimum of mathematical detail. Chapters 1 to 5 may be appropriate as background material for an advanced undergraduate or introductory postgraduate course on turbulence, while chapters 6 to 10 may be suitable as background material for an advanced postgraduate course on turbulence, or act as a reference source for professional researchers. This second edition covers a decade of advancement in the field, streamlining the original content while updating the sections where the subject has moved on. The expanded content includes large-scale dynamics, stratified & rotating turbulence, the increased power of direct numerical simulation, two-dimensional turbulence, Magnetohydrodynamics, and turbulence in the core of the Earth
Introduction to Modern Magnetohydrodynamics
Author: Sébastien Galtier
Publisher: Cambridge University Press
ISBN: 1316692477
Category : Science
Languages : en
Pages : 285
Book Description
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
Publisher: Cambridge University Press
ISBN: 1316692477
Category : Science
Languages : en
Pages : 285
Book Description
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
Studying Stellar Rotation and Convection
Author: Mariejo Goupil
Publisher: Springer
ISBN: 364233380X
Category : Science
Languages : en
Pages : 265
Book Description
This volume synthesizes the results of work carried out by several international teams of the SIROCO (Seismology for Rotation and Convection) collaboration. It provides the theoretical background required to interpret the huge quantity of high-quality observational data recently provided by space experiments such as CoRoT and Kepler. Asteroseismology allows astrophysicists to test, to model and to understand stellar structure and evolution as never before. The chapters in this book address the two groups of topics summarized as "Stellar Rotation and Associated Seismology" as well as "Stellar Convection and Associated Seismology". The book offers the reader solid theoretical background knowledge and adapted seismic diagnostic techniques.
Publisher: Springer
ISBN: 364233380X
Category : Science
Languages : en
Pages : 265
Book Description
This volume synthesizes the results of work carried out by several international teams of the SIROCO (Seismology for Rotation and Convection) collaboration. It provides the theoretical background required to interpret the huge quantity of high-quality observational data recently provided by space experiments such as CoRoT and Kepler. Asteroseismology allows astrophysicists to test, to model and to understand stellar structure and evolution as never before. The chapters in this book address the two groups of topics summarized as "Stellar Rotation and Associated Seismology" as well as "Stellar Convection and Associated Seismology". The book offers the reader solid theoretical background knowledge and adapted seismic diagnostic techniques.
Stellar Structure and Evolution
Author: Rudolf Kippenhahn
Publisher: Springer Science & Business Media
ISBN: 3642303048
Category : Science
Languages : en
Pages : 599
Book Description
This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its first publication, the second edition will be of lasting value not only for students but also for active researchers in astronomy and astrophysics.
Publisher: Springer Science & Business Media
ISBN: 3642303048
Category : Science
Languages : en
Pages : 599
Book Description
This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its first publication, the second edition will be of lasting value not only for students but also for active researchers in astronomy and astrophysics.
Convection in Astrophysics (IAU S239)
Author: International Astronomical Union. Symposium
Publisher: Cambridge University Press
ISBN: 9780521863490
Category : Science
Languages : en
Pages : 552
Book Description
Convection is ubiquitous throughout the Universe, and during the last three decades it has become the largest factor of uncertainty in theoretical models of stars and in the interpretation of observations on the basis of such models. Recently, numerical simulations of convection have dramatically improved in their potential to take into account both the large scale properties of the flow itself and the microphysical properties of the fluid. Observations have become accurate enough to provide stringent tests for both numerical simulations and models of convection. IAU S239 was held to further understanding of convection, bringing together leading researchers in solar and stellar physics, the physics of planets, and of accretion disks. With reviews, research contributions, and detailed recordings of plenary discussions, this book is a valuable resource for professional astronomers and graduate students interested in the interdisciplinary study of one of the key physical processes in astrophysics.
Publisher: Cambridge University Press
ISBN: 9780521863490
Category : Science
Languages : en
Pages : 552
Book Description
Convection is ubiquitous throughout the Universe, and during the last three decades it has become the largest factor of uncertainty in theoretical models of stars and in the interpretation of observations on the basis of such models. Recently, numerical simulations of convection have dramatically improved in their potential to take into account both the large scale properties of the flow itself and the microphysical properties of the fluid. Observations have become accurate enough to provide stringent tests for both numerical simulations and models of convection. IAU S239 was held to further understanding of convection, bringing together leading researchers in solar and stellar physics, the physics of planets, and of accretion disks. With reviews, research contributions, and detailed recordings of plenary discussions, this book is a valuable resource for professional astronomers and graduate students interested in the interdisciplinary study of one of the key physical processes in astrophysics.
Parameterization Of Atmospheric Convection (In 2 Volumes)
Author: Robert S Plant
Publisher: World Scientific
ISBN: 1783266929
Category : Technology & Engineering
Languages : en
Pages : 1169
Book Description
Precipitating atmospheric convection is fundamental to the Earth's weather and climate. It plays a leading role in the heat, moisture and momentum budgets. Appropriate modelling of convection is thus a prerequisite for reliable numerical weather prediction and climate modelling. The current standard approach is to represent it by subgrid-scale convection parameterization.Parameterization of Atmospheric Convection provides, for the first time, a comprehensive presentation of this important topic. The two-volume set equips readers with a firm grasp of the wide range of important issues, and thorough coverage is given of both the theoretical and practical aspects. This makes the parameterization problem accessible to a wider range of scientists than before. At the same time, by providing a solid bottom-up presentation of convection parameterization, this set is the definitive reference point for atmospheric scientists and modellers working on such problems.Volume 1 of this two-volume set focuses on the basic principles: introductions to atmospheric convection and tropical dynamics, explanations and discussions of key parameterization concepts, and a thorough and critical exploration of the mass-flux parameterization framework, which underlies the methods currently used in almost all operational models and at major climate modelling centres. Volume 2 focuses on the practice, which also leads to some more advanced fundamental issues. It includes: perspectives on operational implementations and model performance, tailored verification approaches, the role and representation of cloud microphysics, alternative parameterization approaches, stochasticity, criticality, and symmetry constraints.
Publisher: World Scientific
ISBN: 1783266929
Category : Technology & Engineering
Languages : en
Pages : 1169
Book Description
Precipitating atmospheric convection is fundamental to the Earth's weather and climate. It plays a leading role in the heat, moisture and momentum budgets. Appropriate modelling of convection is thus a prerequisite for reliable numerical weather prediction and climate modelling. The current standard approach is to represent it by subgrid-scale convection parameterization.Parameterization of Atmospheric Convection provides, for the first time, a comprehensive presentation of this important topic. The two-volume set equips readers with a firm grasp of the wide range of important issues, and thorough coverage is given of both the theoretical and practical aspects. This makes the parameterization problem accessible to a wider range of scientists than before. At the same time, by providing a solid bottom-up presentation of convection parameterization, this set is the definitive reference point for atmospheric scientists and modellers working on such problems.Volume 1 of this two-volume set focuses on the basic principles: introductions to atmospheric convection and tropical dynamics, explanations and discussions of key parameterization concepts, and a thorough and critical exploration of the mass-flux parameterization framework, which underlies the methods currently used in almost all operational models and at major climate modelling centres. Volume 2 focuses on the practice, which also leads to some more advanced fundamental issues. It includes: perspectives on operational implementations and model performance, tailored verification approaches, the role and representation of cloud microphysics, alternative parameterization approaches, stochasticity, criticality, and symmetry constraints.
Introduction to Nonextensive Statistical Mechanics
Author: Constantino Tsallis
Publisher: Springer Nature
ISBN: 3030795691
Category : Science
Languages : en
Pages : 575
Book Description
This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics. Conceived nearly 150 years ago by Maxwell, Boltzmann and Gibbs, the BG theory, one of the greatest monuments of contemporary physics, exhibits many impressive successes in physics, chemistry, mathematics, and computational sciences. Presently, several thousands of publications by scientists around the world have been dedicated to its nonextensive generalization. A variety of applications have emerged in complex systems and its mathematical grounding is by now well advanced. Since the first edition release thirteen years ago, there has been a vast amount of new results in the field, all of which have been incorporated in this comprehensive second edition. Heavily revised and updated with new sections and figures, the second edition remains the go-to text on the subject. A pedagogical introduction to the BG theory concepts and their generalizations – nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT’s, complex networks, among others – is presented in this book, as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions. Introduction to Nonextensive Statistical Mechanics is suitable for students and researchers with an interest in complex systems and statistical physics.
Publisher: Springer Nature
ISBN: 3030795691
Category : Science
Languages : en
Pages : 575
Book Description
This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics. Conceived nearly 150 years ago by Maxwell, Boltzmann and Gibbs, the BG theory, one of the greatest monuments of contemporary physics, exhibits many impressive successes in physics, chemistry, mathematics, and computational sciences. Presently, several thousands of publications by scientists around the world have been dedicated to its nonextensive generalization. A variety of applications have emerged in complex systems and its mathematical grounding is by now well advanced. Since the first edition release thirteen years ago, there has been a vast amount of new results in the field, all of which have been incorporated in this comprehensive second edition. Heavily revised and updated with new sections and figures, the second edition remains the go-to text on the subject. A pedagogical introduction to the BG theory concepts and their generalizations – nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT’s, complex networks, among others – is presented in this book, as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions. Introduction to Nonextensive Statistical Mechanics is suitable for students and researchers with an interest in complex systems and statistical physics.