Author: Roger A. Pielke
Publisher: Elsevier Inc. Chapters
ISBN: 0128056983
Category : Science
Languages : en
Pages : 39
Book Description
This chapter discusses principles and applications of satellite simulators to mesoscale meteorological modeling. The principle and mathematical foundations of satellite simulators are presented. This includes brief overviews of satellite orbit, radiative transfer, and single-scattering theories for passive and active sensors, and sensor scanning and antenna gain function. Various applications of satellite simulators are followed, ranging from model evaluation, data assimilation, and supporting future satellite missions.
Mesoscale Meteorological Modeling
Author: Roger A. Pielke
Publisher: Elsevier Inc. Chapters
ISBN: 0128056983
Category : Science
Languages : en
Pages : 39
Book Description
This chapter discusses principles and applications of satellite simulators to mesoscale meteorological modeling. The principle and mathematical foundations of satellite simulators are presented. This includes brief overviews of satellite orbit, radiative transfer, and single-scattering theories for passive and active sensors, and sensor scanning and antenna gain function. Various applications of satellite simulators are followed, ranging from model evaluation, data assimilation, and supporting future satellite missions.
Publisher: Elsevier Inc. Chapters
ISBN: 0128056983
Category : Science
Languages : en
Pages : 39
Book Description
This chapter discusses principles and applications of satellite simulators to mesoscale meteorological modeling. The principle and mathematical foundations of satellite simulators are presented. This includes brief overviews of satellite orbit, radiative transfer, and single-scattering theories for passive and active sensors, and sensor scanning and antenna gain function. Various applications of satellite simulators are followed, ranging from model evaluation, data assimilation, and supporting future satellite missions.
Mesoscale Modeling in Chemical Engineering Part I
Author:
Publisher: Academic Press
ISBN: 0128013540
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Focusing Mesoscales of Multiscale Problems in Chemical Engineering, a volume in the Advances in Chemical Engineering series provides readers with the personal views of recognized authorities who present assessments of the state-of-the-art in the field and help readers develop an understanding of its further evolution. Subjects covered in the book are not limited to the classical chemical engineering disciplines. Contributions connecting chemical engineering to related scientific fields, either providing a fundamental basis or introducing new concepts and tools, are encouraged. This volume aims to create a balance between well developed areas such as process industry, transformation of materials, energy, and environmental issues, and areas where applications of chemical engineering are more recent or emerging. - Contains reviews by leading authorities in their respective areas - Provides up-to-date reviews of the latest techniques in the modeling of catalytic processes - Includes a broad mix of US and European authors, as well as academic/industrial/research institute perspectives - Provides discussions on the connections between computation and experimental methods
Publisher: Academic Press
ISBN: 0128013540
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Focusing Mesoscales of Multiscale Problems in Chemical Engineering, a volume in the Advances in Chemical Engineering series provides readers with the personal views of recognized authorities who present assessments of the state-of-the-art in the field and help readers develop an understanding of its further evolution. Subjects covered in the book are not limited to the classical chemical engineering disciplines. Contributions connecting chemical engineering to related scientific fields, either providing a fundamental basis or introducing new concepts and tools, are encouraged. This volume aims to create a balance between well developed areas such as process industry, transformation of materials, energy, and environmental issues, and areas where applications of chemical engineering are more recent or emerging. - Contains reviews by leading authorities in their respective areas - Provides up-to-date reviews of the latest techniques in the modeling of catalytic processes - Includes a broad mix of US and European authors, as well as academic/industrial/research institute perspectives - Provides discussions on the connections between computation and experimental methods
Process Intensification and Integration for Sustainable Design
Author: Dominic C. Y. Foo
Publisher: John Wiley & Sons
ISBN: 3527345477
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.
Publisher: John Wiley & Sons
ISBN: 3527345477
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.
Computational Science and Its Applications - ICCSA 2006
Author: Marina Gavrilova
Publisher: Springer Science & Business Media
ISBN: 354034070X
Category : Computers
Languages : en
Pages : 1272
Book Description
The five-volume set LNCS 3980-3984 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2006, held in Glasgow, UK in May 2006.The five volumes present a total of 664 papers selected from over 2300 submissions. The papers present a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the refereed papers are structured according to the five major conference themes: computational methods, algorithms and applications high performance technical computing and networks advanced and emerging applications geometric modelling, graphics and visualization information systems and information technologies.Moreover, submissions from 31 Workshops and technical sessions in the areas, such as information security, mobile communication, grid computing, modeling, optimization, computational geometry, virtual reality, symbolic computations, molecular structures, Web systems and intelligence, spatial analysis, bioinformatics and geocomputations, contribute to this publication.
Publisher: Springer Science & Business Media
ISBN: 354034070X
Category : Computers
Languages : en
Pages : 1272
Book Description
The five-volume set LNCS 3980-3984 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2006, held in Glasgow, UK in May 2006.The five volumes present a total of 664 papers selected from over 2300 submissions. The papers present a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the refereed papers are structured according to the five major conference themes: computational methods, algorithms and applications high performance technical computing and networks advanced and emerging applications geometric modelling, graphics and visualization information systems and information technologies.Moreover, submissions from 31 Workshops and technical sessions in the areas, such as information security, mobile communication, grid computing, modeling, optimization, computational geometry, virtual reality, symbolic computations, molecular structures, Web systems and intelligence, spatial analysis, bioinformatics and geocomputations, contribute to this publication.
Applying Molecular and Materials Modeling
Author: Phillip R. Westmoreland
Publisher: Springer Science & Business Media
ISBN: 9401707650
Category : Science
Languages : en
Pages : 596
Book Description
Computational molecular and materials modeling has emerged to deliver solid technological impacts in the chemical, pharmaceutical, and materials industries. It is not the all-predictive science fiction that discouraged early adopters in the 1980s. Rather, it is proving a valuable aid to designing and developing new products and processes. People create, not computers, and these tools give them qualitative relations and quantitative properties that they need to make creative decisions. With detailed analysis and examples from around the world, Applying Molecular and Materials Modeling describes the science, applications, and infrastructures that have proven successful. Computational quantum chemistry, molecular simulations, informatics, desktop graphics, and high-performance computing all play important roles. At the same time, the best technology requires the right practitioners, the right organizational structures, and - most of all - a clearly understood blend of imagination and realism that propels technological advances. This book is itself a powerful tool to help scientists, engineers, and managers understand and take advantage of these advances.
Publisher: Springer Science & Business Media
ISBN: 9401707650
Category : Science
Languages : en
Pages : 596
Book Description
Computational molecular and materials modeling has emerged to deliver solid technological impacts in the chemical, pharmaceutical, and materials industries. It is not the all-predictive science fiction that discouraged early adopters in the 1980s. Rather, it is proving a valuable aid to designing and developing new products and processes. People create, not computers, and these tools give them qualitative relations and quantitative properties that they need to make creative decisions. With detailed analysis and examples from around the world, Applying Molecular and Materials Modeling describes the science, applications, and infrastructures that have proven successful. Computational quantum chemistry, molecular simulations, informatics, desktop graphics, and high-performance computing all play important roles. At the same time, the best technology requires the right practitioners, the right organizational structures, and - most of all - a clearly understood blend of imagination and realism that propels technological advances. This book is itself a powerful tool to help scientists, engineers, and managers understand and take advantage of these advances.
Integrated Computational Materials Engineering (ICME) for Metals
Author: Mark F. Horstemeyer
Publisher: John Wiley & Sons
ISBN: 1119018366
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.
Publisher: John Wiley & Sons
ISBN: 1119018366
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.
Metal Oxide Nanoparticles, 2 Volume Set
Author: Oliver Diwald
Publisher: John Wiley & Sons
ISBN: 1119436745
Category : Technology & Engineering
Languages : de
Pages : 903
Book Description
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
Publisher: John Wiley & Sons
ISBN: 1119436745
Category : Technology & Engineering
Languages : de
Pages : 903
Book Description
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
Fundamentals of Multiscale Modeling of Structural Materials
Author: Wenjie Xia
Publisher: Elsevier
ISBN: 0128230533
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. - Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials - Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques - Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more - Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered - Discusses the integration of multiscale modeling and artificial intelligence
Publisher: Elsevier
ISBN: 0128230533
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. - Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials - Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques - Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more - Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered - Discusses the integration of multiscale modeling and artificial intelligence
Mesoscale Modeling in Chemical Engineering Part II
Author:
Publisher: Academic Press
ISBN: 0128039310
Category : Technology & Engineering
Languages : en
Pages : 422
Book Description
Mesoscale Modeling in Chemical Engineering, a volume in the Advances in Chemical Engineering series provides the reader with personal views of authorities in the field. Subjects covered are not limited to the classical chemical engineering disciplines, with contributions connecting chemical engineering to related scientific fields, thus providing new ideas for additional thought. The book balances well developed areas such as process industry, transformation of materials, energy, and environmental issues with areas where applications of chemical engineering are more recent or emerging. - Contains reviews by leading authorities in the respective areas - Presents Up-to-date reviews of latest techniques in modeling of catalytic processes - Includes a mix of US and European authors, as well as academic/industrial/research institute perspectives - Contains the critical connections between computation and experimental methods
Publisher: Academic Press
ISBN: 0128039310
Category : Technology & Engineering
Languages : en
Pages : 422
Book Description
Mesoscale Modeling in Chemical Engineering, a volume in the Advances in Chemical Engineering series provides the reader with personal views of authorities in the field. Subjects covered are not limited to the classical chemical engineering disciplines, with contributions connecting chemical engineering to related scientific fields, thus providing new ideas for additional thought. The book balances well developed areas such as process industry, transformation of materials, energy, and environmental issues with areas where applications of chemical engineering are more recent or emerging. - Contains reviews by leading authorities in the respective areas - Presents Up-to-date reviews of latest techniques in modeling of catalytic processes - Includes a mix of US and European authors, as well as academic/industrial/research institute perspectives - Contains the critical connections between computation and experimental methods
Mesoscale Modeling of the Atmosphere
Author: Roger Pielke
Publisher: Springer
ISBN: 1935704125
Category : Science
Languages : en
Pages : 166
Book Description
This book provides an overview of several components of mesoscale modeling: boundary conditions, subgrid-scale parameterization, moisture processes, and radiation. Also included are mesoscale model comparisons using data from the U.S. Army's Project WIND (Winds in Non-uniform Domains).
Publisher: Springer
ISBN: 1935704125
Category : Science
Languages : en
Pages : 166
Book Description
This book provides an overview of several components of mesoscale modeling: boundary conditions, subgrid-scale parameterization, moisture processes, and radiation. Also included are mesoscale model comparisons using data from the U.S. Army's Project WIND (Winds in Non-uniform Domains).