Integrated Modeling of Phototrophic Metabolism Leveraging Multi-Omics Datasets

Integrated Modeling of Phototrophic Metabolism Leveraging Multi-Omics Datasets PDF Author: Debolina Sarkar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Rapid progress in high-throughput experimental technologies has enabled generation of large-scale systems biology datasets. These span all biological hierarchies from genomics describing the genetic make-up, transcriptomics and proteomics at the gene and enzyme expression level, metabolomics that helps quantify the amount and nature of resultant biomolecules, to finally phenomics that describes the overall traits of an individual. This veritable data deluge necessitates algorithmic and computational advances that can leverage multi-omics integration, in order to facilitate the analysis of complex systems and extract meaningful insights. Flux balance analysis (FBA) using genome-scale metabolic (GSM) models provide an advantageous platform for doing so as these models are (relatively) parameter-free, can be constructed using the annotated genome alone and simulated in linear time offering scale-up benefits. GSMs model a network view of metabolism, wherein metabolites are cast as nodes in a graph linked via edges representing all possible biochemical conversions occurring within an organism. In Chapter 1, we present an overview of constraints-based analysis of metabolic networks, including the reconstruction of GSM models, their use within an optimization-based scheme such as FBA, and the various applications of such models. Next, we describe the extension of metabolic modeling frameworks, originally designed for microbial systems, to the study of plants. This is accompanied by its own set of challenges, such as accurately capturing the division of roles between the various tissue and organ systems and dealing with systematic biases that are typically associated with poorly annotated non-model systems. Finally, we explore how the incorporation of new data types, modeling schemes, and computational tools have impacted FBA by helping increase its predictive power and scope. FBA has proven to be quite adept at describing aggregated metabolite flows, i.e., providing a snapshot of metabolism as averaged over the entire growth cycle. However, it is also time invariant, and thus does not accommodate temporally varying cell processes such as sequestering different biomass components at various time points in a growth cycle However, we know from experiments that many organisms including cyanobacteria have a lifestyle that is heavily tailored around light availability and thus show metabolic oscillations. In Chapter 2, we present a framework called CycleSyn that augments FBA by accounting for such temporal trends. CycleSyn discretizes a growth cycle into individual time periods (called Time Point Models or TPMs), each described by its own GSM model. The flow of metabolites across TPMs is allowed while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. Additional time-dependent constraints can also be imposed to capture the cyclic nature of cellular processes. CycleSyn was used to develop a diurnal FBA model of Synechocystis sp. PCC 6803 metabolism. Predicted flux and metabolite pools were in line with published studies, paving the way for constructing time-resolved GSM models. Additionally, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to fix nitrogen by temporally separating it from photosynthesis was also explored. Similar to modeling multiple metabolic models at once in CycleSyn, in Chapter 3 we extend this to modeling multiple organisms together as in a community, so as to discern the underlying interactions. This community comprised a genetically streamlined unicellular cyanobacterium called Candidatus Atelocyanobacterium thalassa (or UCYN-A) living in a symbiosis with a phototrophic microalga. We used metabolic modeling to glean insights into UCYN-A's unique physiology and metabolic processes governing the symbiotic association. To this end, we developed an optimization-based framework that infers all possible trophic scenarios consistent with the observed data. Possible mechanisms employed by UCYN-A to accommodate diazotrophy with daytime carbon fixation by the host (i.e., two mutually incompatible processes) were also elucidated. We found that the metabolic functions of the two constituents, and UCYN-A's streamlined genome is optimized to support maximal nitrogen fixation flux, alluding that this symbiosis is as close to being a functional 'nitroplast' as any observed till date. We envision that the developed framework using UCYN-A and its algal host will be used as a roadmap and motivate the study of similarly unique microbial systems in the future. Understanding how genomic mutations impact the overall phenotype of an organism has been a focus of efforts aimed at improving growth yield, determining genetic markers governing a trait, and understanding adaptive processes. This has been performed conventionally using genome-wide association studies, which seek to identify the genetic background behind a trait by examining associations between phenotypes and single-nucleotide polymorphisms (SNPs). Although such studies are common, biological interpretation of the results remains a challenge; especially due to the confounding nature of population structure and the systematic biases thus introduced. In Chapter 4, we propose a complementary tool called SNPeffect that offers putative genotype-to-phenotype mechanistic interpretations by integrating biochemical knowledge encoded in metabolic models. SNPeffect was used to explain differential growth rate and metabolite accumulation in Arabidopsis and poplar as the outcome of SNPs in enzyme-coding genes. To this end, we also constructed a genome-scale metabolic model for Populus trichocarpa, the first for a perennial woody tree. As expected, our results indicated that growth is a complex polygenic trait governed by carbon and energy partitioning. The predicted set of functional SNPs in both species are associated with experimentally-characterized growth-determining genes and also suggest putative ones. Functional SNPs were found in pathways such as amino-acid metabolism, nucleotide biosynthesis, and cellulose and lignin biosynthesis, in line with breeding strategies that target pathways governing carbon and energy partition. Thus far, we have developed computational frameworks that examine how the metabolism of an organism dictates its total phenotype and interactions with other organisms in a community. In Chapter 5, we take the next step by examining ways in which an organism can impact its host, specifically how the infant gut microbiome is shaped. Fecal samples from newborn infants showed that gut bacteria is detectable by 16 h after birth. However, analysis of the microbiome, proteome, and metabolome data did not suggest a single genomic signature for neonatal gut colonization. Using flux balance modeling, we found E. coli to be the most common early colonizer. The appearance of bacteria was associated with decreased levels of free amino acids and an increase in products of bacterial fermentation, primarily acetate and succinate. Among all the microbial species found, these observations were only consistent with E. coli growing under anaerobic conditions using amino acid fermentation to support maximal ATP yield. These results provide a deep characterization of the first microbes in the human gut and show how the biochemical environment is altered by their appearance. Finally, in Chapter 6, we conclude with our efforts to develop computational frameworks enabling the integration of heterogeneous datasets within constraints-based optimization. We discuss current challenges associated with such modeling frameworks and their uses, and finally present future perspectives for augmenting these models with the incorporation of diverse data types, multi-scale modeling, cross-cutting applications.

Integrated Modeling of Phototrophic Metabolism Leveraging Multi-Omics Datasets

Integrated Modeling of Phototrophic Metabolism Leveraging Multi-Omics Datasets PDF Author: Debolina Sarkar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Rapid progress in high-throughput experimental technologies has enabled generation of large-scale systems biology datasets. These span all biological hierarchies from genomics describing the genetic make-up, transcriptomics and proteomics at the gene and enzyme expression level, metabolomics that helps quantify the amount and nature of resultant biomolecules, to finally phenomics that describes the overall traits of an individual. This veritable data deluge necessitates algorithmic and computational advances that can leverage multi-omics integration, in order to facilitate the analysis of complex systems and extract meaningful insights. Flux balance analysis (FBA) using genome-scale metabolic (GSM) models provide an advantageous platform for doing so as these models are (relatively) parameter-free, can be constructed using the annotated genome alone and simulated in linear time offering scale-up benefits. GSMs model a network view of metabolism, wherein metabolites are cast as nodes in a graph linked via edges representing all possible biochemical conversions occurring within an organism. In Chapter 1, we present an overview of constraints-based analysis of metabolic networks, including the reconstruction of GSM models, their use within an optimization-based scheme such as FBA, and the various applications of such models. Next, we describe the extension of metabolic modeling frameworks, originally designed for microbial systems, to the study of plants. This is accompanied by its own set of challenges, such as accurately capturing the division of roles between the various tissue and organ systems and dealing with systematic biases that are typically associated with poorly annotated non-model systems. Finally, we explore how the incorporation of new data types, modeling schemes, and computational tools have impacted FBA by helping increase its predictive power and scope. FBA has proven to be quite adept at describing aggregated metabolite flows, i.e., providing a snapshot of metabolism as averaged over the entire growth cycle. However, it is also time invariant, and thus does not accommodate temporally varying cell processes such as sequestering different biomass components at various time points in a growth cycle However, we know from experiments that many organisms including cyanobacteria have a lifestyle that is heavily tailored around light availability and thus show metabolic oscillations. In Chapter 2, we present a framework called CycleSyn that augments FBA by accounting for such temporal trends. CycleSyn discretizes a growth cycle into individual time periods (called Time Point Models or TPMs), each described by its own GSM model. The flow of metabolites across TPMs is allowed while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. Additional time-dependent constraints can also be imposed to capture the cyclic nature of cellular processes. CycleSyn was used to develop a diurnal FBA model of Synechocystis sp. PCC 6803 metabolism. Predicted flux and metabolite pools were in line with published studies, paving the way for constructing time-resolved GSM models. Additionally, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to fix nitrogen by temporally separating it from photosynthesis was also explored. Similar to modeling multiple metabolic models at once in CycleSyn, in Chapter 3 we extend this to modeling multiple organisms together as in a community, so as to discern the underlying interactions. This community comprised a genetically streamlined unicellular cyanobacterium called Candidatus Atelocyanobacterium thalassa (or UCYN-A) living in a symbiosis with a phototrophic microalga. We used metabolic modeling to glean insights into UCYN-A's unique physiology and metabolic processes governing the symbiotic association. To this end, we developed an optimization-based framework that infers all possible trophic scenarios consistent with the observed data. Possible mechanisms employed by UCYN-A to accommodate diazotrophy with daytime carbon fixation by the host (i.e., two mutually incompatible processes) were also elucidated. We found that the metabolic functions of the two constituents, and UCYN-A's streamlined genome is optimized to support maximal nitrogen fixation flux, alluding that this symbiosis is as close to being a functional 'nitroplast' as any observed till date. We envision that the developed framework using UCYN-A and its algal host will be used as a roadmap and motivate the study of similarly unique microbial systems in the future. Understanding how genomic mutations impact the overall phenotype of an organism has been a focus of efforts aimed at improving growth yield, determining genetic markers governing a trait, and understanding adaptive processes. This has been performed conventionally using genome-wide association studies, which seek to identify the genetic background behind a trait by examining associations between phenotypes and single-nucleotide polymorphisms (SNPs). Although such studies are common, biological interpretation of the results remains a challenge; especially due to the confounding nature of population structure and the systematic biases thus introduced. In Chapter 4, we propose a complementary tool called SNPeffect that offers putative genotype-to-phenotype mechanistic interpretations by integrating biochemical knowledge encoded in metabolic models. SNPeffect was used to explain differential growth rate and metabolite accumulation in Arabidopsis and poplar as the outcome of SNPs in enzyme-coding genes. To this end, we also constructed a genome-scale metabolic model for Populus trichocarpa, the first for a perennial woody tree. As expected, our results indicated that growth is a complex polygenic trait governed by carbon and energy partitioning. The predicted set of functional SNPs in both species are associated with experimentally-characterized growth-determining genes and also suggest putative ones. Functional SNPs were found in pathways such as amino-acid metabolism, nucleotide biosynthesis, and cellulose and lignin biosynthesis, in line with breeding strategies that target pathways governing carbon and energy partition. Thus far, we have developed computational frameworks that examine how the metabolism of an organism dictates its total phenotype and interactions with other organisms in a community. In Chapter 5, we take the next step by examining ways in which an organism can impact its host, specifically how the infant gut microbiome is shaped. Fecal samples from newborn infants showed that gut bacteria is detectable by 16 h after birth. However, analysis of the microbiome, proteome, and metabolome data did not suggest a single genomic signature for neonatal gut colonization. Using flux balance modeling, we found E. coli to be the most common early colonizer. The appearance of bacteria was associated with decreased levels of free amino acids and an increase in products of bacterial fermentation, primarily acetate and succinate. Among all the microbial species found, these observations were only consistent with E. coli growing under anaerobic conditions using amino acid fermentation to support maximal ATP yield. These results provide a deep characterization of the first microbes in the human gut and show how the biochemical environment is altered by their appearance. Finally, in Chapter 6, we conclude with our efforts to develop computational frameworks enabling the integration of heterogeneous datasets within constraints-based optimization. We discuss current challenges associated with such modeling frameworks and their uses, and finally present future perspectives for augmenting these models with the incorporation of diverse data types, multi-scale modeling, cross-cutting applications.

Uncovering the Molecular Networks of Metabolic Diseases Using Systems Biology

Uncovering the Molecular Networks of Metabolic Diseases Using Systems Biology PDF Author: Le Shu
Publisher:
ISBN:
Category :
Languages : en
Pages : 191

Get Book Here

Book Description
The past few decades have seen dramatic increase in the prevalence of metabolic diseases (MetDs) including obesity, type 2 diabetes (T2D) and cardiovascular disease (CVD), imposing unprecedented burden on public health worldwide. MetDs stem from a complex interplay of multiple genes and cumulative exposure to environmental risk factors, yet the exact etiology remains elusive. To address this challenge, I embarked interdisciplinary systems biology studies encompassing the development of a multi-omics integration tool, elucidation of genetically perturbed tissue networks shared by T2D and CVD, and examination of environmentally perturbed gene networks by a prevalent endocrine disrupting chemical (EDC). First, I developed a multi-omics integration pipeline named Mergeomics, which consists of independent modules that 1) leverage multi-omics association data to identify biological processes that are perturbed in disease, and 2) overlay the disease-associated processes onto molecular interaction networks to pinpoint hubs as potential key regulators. Unlike existing tools that are mostly dedicated to specific data type or settings, the Mergeomics pipeline accepts and integrates datasets across platforms, data types, and species. The performance of Mergeomics was demonstrated by both simulation and case studies that include genome-wide, epigenome-wide, and transcriptome-wide datasets of total cholesterol and fasting glucose. I then applied Mergeomics to identify the shared gene networks between CVD and T2D through a comprehensive integrative analysis driven by five multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models from CVD and T2D relevant tissues. The shared networks captured both known and novel processes underlying CVD and T2D. I also predicted 15 key drivers for the shared gene networks and cross-validated the regulatory role of top key drivers using in vitro siRNA knockdown, in vivo gene knockout, and two Hybrid Mouse Diversity Panels each comprised of >100 strains. Lastly, I leveraged systems biology approaches to assess the target tissues, molecular pathways, and gene regulatory networks associated with a developmental exposure to the model EDC Bisphenol A (BPA). Prenatal BPA exposure was found to cause transcriptomic and methylomic alterations in the adipose, hypothalamus, and liver tissues in mouse offspring, with cross-tissue perturbations in lipid metabolism as well as tissue-specific alterations in histone subunits, glucose metabolism and extracellular matrix. Network modeling prioritized main molecular targets of BPA, including Pparg, Hnf4a, Esr1, and Fasn. Moreover, integrative analyses identified the association of BPA molecular signatures with MetDs phenotypes in mouse and human. In summary, I presented the community a flexible and robust computational pipeline for multidimensional data integration, and offered mechanistic insights into the genetic and environmental underpinnings of MetDs by exploiting the power of systems biology through both computational and experimental approaches.

Systems Biology

Systems Biology PDF Author: Bernhard Palsson
Publisher: Cambridge University Press
ISBN: 1107038855
Category : Medical
Languages : en
Pages : 551

Get Book Here

Book Description
The first comprehensive single-authored textbook on genome-scale models and the bottom-up approach to systems biology.

Systems-Level Modelling of Microbial Communities

Systems-Level Modelling of Microbial Communities PDF Author: Aarthi Ravikrishnan
Publisher: CRC Press
ISBN: 0429946074
Category : Computers
Languages : en
Pages : 101

Get Book Here

Book Description
Overview of ecological principles underlying natural and synthetic microbial communities Techniques to infer relationships in microbial communities from metagenomic sequences Detailed account of constraint-based methods to decipher metabolic interactions in microbial communities Case studies to illustrate applications of various community modelling approaches Brief outline of experimental methods to understand and characterise microbial communities

Omics in Plant Breeding

Omics in Plant Breeding PDF Author: Aluízio Borém
Publisher: John Wiley & Sons
ISBN: 1118820843
Category : Science
Languages : en
Pages : 253

Get Book Here

Book Description
Computational and high-throughput methods, such as genomics, proteomics, and transcriptomics, known collectively as “-omics,” have been used to study plant biology for well over a decade now. As these technologies mature, plant and crop scientists have started using these methods to improve crop varieties. Omics in Plant Breeding provides a timely introduction to key omicsbased methods and their application in plant breeding. Omics in Plant Breeding is a practical and accessible overview of specific omics-based methods ranging from metabolomics to phenomics. Covering a single methodology within each chapter, this book provides thorough coverage that ensures a strong understanding of each methodology both in its application to, and improvement of, plant breeding. Accessible to advanced students, researchers, and professionals, Omics in Plant Breeding will be an essential entry point into this innovative and exciting field. • A valuable overview of high-throughput, genomics-based technologies and their applications to plant breeding • Each chapter explores a single methodology, allowing for detailed and thorough coverage • Coverage ranges from well-established methodologies, such as genomics and proteomics, to emerging technologies, including phenomics and physionomics Aluízio Borém is a Professor of Plant Breeding at the University of Viçosa in Brazil. Roberto Fritsche-Neto is a Professor of Genetics and Plant Breeding at the University of São Paulo in Brazil.

Review of the Department of Energy's Genomics: GTL Program

Review of the Department of Energy's Genomics: GTL Program PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309180716
Category : Science
Languages : en
Pages : 102

Get Book Here

Book Description
The U.S. Department of Energy (DOE) promotes scientific and technological innovation to advance the national, economic, and energy security of the United States. Recognizing the potential of microorganisms to offer new energy alternatives and remediate environmental contamination, DOE initiated the Genomes to Life program, now called Genomics: GTL, in 2000. The program aims to develop a predictive understanding of microbial systems that can be used to engineer systems for bioenergy production and environmental remediation, and to understand carbon cycling and sequestration. This report provides an evaluation of the program and its infrastructure plan. Overall, the report finds that GTL's research has resulted in and promises to deliver many more scientific advancements that contribute to the achievement of DOE's goals. However, the DOE's current plan for building four independent facilities for protein production, molecular imaging, proteome analysis, and systems biology sequentially may not be the most cost-effective, efficient, and scientifically optimal way to provide this infrastructure. As an alternative, the report suggests constructing up to four institute-like facilities, each of which integrates the capabilities of all four of the originally planned facility types and focuses on one or two of DOE's mission goals. The alternative infrastructure plan could have an especially high ratio of scientific benefit to cost because the need for technology will be directly tied to the biology goals of the program.

Cell Biology by the Numbers

Cell Biology by the Numbers PDF Author: Ron Milo
Publisher: Garland Science
ISBN: 1317230698
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid

Omics Technologies and Bio-engineering

Omics Technologies and Bio-engineering PDF Author: Debmalya Barh
Publisher: Academic Press
ISBN: 0128047496
Category : Technology & Engineering
Languages : en
Pages : 645

Get Book Here

Book Description
Omics Technologies and Bio-Engineering: Towards Improving Quality of Life, Volume 1 is a unique reference that brings together multiple perspectives on omics research, providing in-depth analysis and insights from an international team of authors. The book delivers pivotal information that will inform and improve medical and biological research by helping readers gain more direct access to analytic data, an increased understanding on data evaluation, and a comprehensive picture on how to use omics data in molecular biology, biotechnology and human health care. Covers various aspects of biotechnology and bio-engineering using omics technologies Focuses on the latest developments in the field, including biofuel technologies Provides key insights into omics approaches in personalized and precision medicine Provides a complete picture on how one can utilize omics data in molecular biology, biotechnology and human health care

Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511

Get Book Here

Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

The Tomato Genome

The Tomato Genome PDF Author: Mathilde Causse
Publisher: Springer
ISBN: 3662533898
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species’ genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.