Insights in plant symbiotic interactions: 2021

Insights in plant symbiotic interactions: 2021 PDF Author: Andrea Genre
Publisher: Frontiers Media SA
ISBN: 2832517498
Category : Science
Languages : en
Pages : 207

Get Book Here

Book Description

Insights in plant symbiotic interactions: 2021

Insights in plant symbiotic interactions: 2021 PDF Author: Andrea Genre
Publisher: Frontiers Media SA
ISBN: 2832517498
Category : Science
Languages : en
Pages : 207

Get Book Here

Book Description


Insights in Microbe and Virus Interactions With Plants: 2021

Insights in Microbe and Virus Interactions With Plants: 2021 PDF Author: Marco Scortichini
Publisher: Frontiers Media SA
ISBN: 2889769364
Category : Science
Languages : en
Pages : 198

Get Book Here

Book Description


Plant Microbe Symbiosis

Plant Microbe Symbiosis PDF Author: Ajit Varma
Publisher: Springer Nature
ISBN: 3030362485
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
This book provides an overview of the latest advances concerning symbiotic relationships between plants and microbes, and their applications in plant productivity and agricultural sustainability. Symbiosis is a living phenomenon including dynamic variations in the genome, metabolism and signaling network, and adopting a multidirectional perspective on their interactions is required when studying symbiotic organisms. Although various plant-microbe symbiotic systems are covered in this book, it especially focuses on arbuscular mycorrhiza (AM) symbiosis and root nodule symbiosis, the two most prevalent systems. AM symbiosis involves the most extensive interaction between plants and microbes, in the context of phylogeny and ecology. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition, as well as the diversity of natural ecosystems, are frequently dependent upon the presence and activity of mycorrhizas. In turn, root nodule symbiosis includes morphogenesis and is formed by communication between plants and nitrogen-fixing bacteria. The biotechnological application of plant–microbe symbiosis is expected to foster the production of agricultural and horticultural products while maintaining ecologically and economically sustainable production systems. Designed as a hands-on guide, this book offers an essential resource for researchers and students in the areas of agri-biotechnology, soil biology and fungal biology.

New insights into the influences of soil nutrients on plant-fungal symbiosis in agro- and forest ecosystems

New insights into the influences of soil nutrients on plant-fungal symbiosis in agro- and forest ecosystems PDF Author: Kai Sun
Publisher: Frontiers Media SA
ISBN: 2832531407
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description


Plant-Microbe Interactions

Plant-Microbe Interactions PDF Author: B.B. Biswas
Publisher: Springer Science & Business Media
ISBN: 1489917071
Category : Science
Languages : en
Pages : 455

Get Book Here

Book Description
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at the site of infection during an incompatible interaction between a resistant plant and an avirulent pathogen, and a slow, normosensitive plant cell death that spreads beyond the site of infection during some compatible interactions involving a susceptible plant and a virulent, necrogenic pathogen. Plants possess a number of defense mechanisms against infection, such as (i) production of phytoalexin, (ii) formation of hydrolases, (iii) accumulation of hydroxyproline-rich glycoprotein and lignin deposition, (iv) production of pathogen-related proteins, (v) produc tion of oligosaccharides, jasmonic acid, and various other phenolic substances, and (vi) production of toxin-metabolizing enzymes. Based on these observations, insertion of a single suitable gene in a particular plant has yielded promising results in imparting resistance against specific infection or disease. It appears that a signal received after microbe infection triggers different signal transduction pathways.

Plant Microbiomes for Sustainable Agriculture

Plant Microbiomes for Sustainable Agriculture PDF Author: Ajar Nath Yadav
Publisher: Springer Nature
ISBN: 3030384535
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
This book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants. The microbes associated with plant as rhizospheric, endophytic and epiphytic with plant growth promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. PGP microbes promote plant growth directly or indirectly, either by releasing plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation or by producing siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. The PGP microbes belong to different phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes and Proteobacteria) and fungi (Ascomycota and Basidiomycota), which include different genera namely Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconoacetobacter, Haloarcula, Herbaspirillum, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP microbes could be used as biofertilizers/bioinoculants at place of chemical fertilizers for sustainable agriculture. The aim of “Plant Microbiomes for Sustainable Agriculture” is to provide the current developments in the understanding of microbial diversity associated with plant systems in the form of rhizospheric, endophytic and epiphytic. The book is useful to scientist, research and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.

Plasmodesmata: Recent Progress and New Insights

Plasmodesmata: Recent Progress and New Insights PDF Author: Jung-Youn Lee
Publisher: Frontiers Media SA
ISBN: 2889742636
Category : Science
Languages : en
Pages : 145

Get Book Here

Book Description


Small Molecules Bridging Terrestrial Microbial Interactions in Multitrophic Systems

Small Molecules Bridging Terrestrial Microbial Interactions in Multitrophic Systems PDF Author: Elisa Korenblum
Publisher: Frontiers Media SA
ISBN: 2889762955
Category : Science
Languages : en
Pages : 203

Get Book Here

Book Description


Microbial Management of Plant Stresses

Microbial Management of Plant Stresses PDF Author: Ajay Kumar
Publisher: Woodhead Publishing
ISBN: 0323859208
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice. Demonstrates microbial ecosystems as an indigenous system for improving plant growth, health and stress resilience Covers all the novel aspects of microbial regulatory mechanism. Key challenges associated with microbial delivery and successful establishment for plant growth promotion and stress avoidance Explores plant microbiome and the modulation of plant defense and ecological dynamics under stressed environment

Plant Microbe Interactions

Plant Microbe Interactions PDF Author:
Publisher: Academic Press
ISBN: 9780124201163
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Currently in its 75th volume, the series features several reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology, and ecology.