Author: Dean A. Carlson
Publisher: Springer Science & Business Media
ISBN: 3662025299
Category : Business & Economics
Languages : en
Pages : 270
Book Description
This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general.
Infinite Horizon Optimal Control
Author: Dean A. Carlson
Publisher: Springer Science & Business Media
ISBN: 3662025299
Category : Business & Economics
Languages : en
Pages : 270
Book Description
This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general.
Publisher: Springer Science & Business Media
ISBN: 3662025299
Category : Business & Economics
Languages : en
Pages : 270
Book Description
This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general.
Stochastic Optimal Control
Author: Dimitri P. Bertsekas
Publisher:
ISBN: 9780120932603
Category : Dynamic programming
Languages : en
Pages : 323
Book Description
Publisher:
ISBN: 9780120932603
Category : Dynamic programming
Languages : en
Pages : 323
Book Description
Discrete-Time Optimal Control and Games on Large Intervals
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3319529323
Category : Mathematics
Languages : en
Pages : 402
Book Description
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discrete-time analogs of Bolza problems in calculus of variations are studied. The structures of approximate solutions of two-player zero-sum games are analyzed through standard convexity-concavity assumptions. Finally, turnpike properties for approximate solutions in a class of nonautonomic dynamic discrete-time games with convexity-concavity assumptions are examined.
Publisher: Springer
ISBN: 3319529323
Category : Mathematics
Languages : en
Pages : 402
Book Description
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discrete-time analogs of Bolza problems in calculus of variations are studied. The structures of approximate solutions of two-player zero-sum games are analyzed through standard convexity-concavity assumptions. Finally, turnpike properties for approximate solutions in a class of nonautonomic dynamic discrete-time games with convexity-concavity assumptions are examined.
Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model
Author: Alexander J. Zaslavski
Publisher: Springer Nature
ISBN: 9811622523
Category : Mathematics
Languages : en
Pages : 354
Book Description
This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson–Solow–Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solow, and Thirukodikaval Nilakanta Srinivasan and was further studied by Robinson, Nobuo Okishio, and Joseph Stiglitz. Since then, the study of the RSS model has become an important element of economic dynamics. In this book, two large general classes of optimal control problems, both of them containing the RSS model as a particular case, are presented for study. For these two classes, a turnpike theory is developed and the existence of solutions to the corresponding infinite horizon optimal control problems is established. The book contains 9 chapters. Chapter 1 discusses turnpike properties for some optimal control problems that are known in the literature, including problems corresponding to the RSS model. The first class of optimal control problems is studied in Chaps. 2–6. In Chap. 2, infinite horizon optimal control problems with nonautonomous optimality criteria are considered. The utility functions, which determine the optimality criterion, are nonconcave. This class of models contains the RSS model as a particular case. The stability of the turnpike phenomenon of the one-dimensional nonautonomous concave RSS model is analyzed in Chap. 3. The following chapter takes up the study of a class of autonomous nonconcave optimal control problems, a subclass of problems considered in Chap. 2. The equivalence of the turnpike property and the asymptotic turnpike property, as well as the stability of the turnpike phenomenon, is established. Turnpike conditions and the stability of the turnpike phenomenon for nonautonomous problems are examined in Chap. 5, with Chap. 6 devoted to the study of the turnpike properties for the one-dimensional nonautonomous nonconcave RSS model. The utility functions, which determine the optimality criterion, are nonconcave. The class of RSS models is identified with a complete metric space of utility functions. Using the Baire category approach, the turnpike phenomenon is shown to hold for most of the models. Chapter 7 begins the study of the second large class of autonomous optimal control problems, and turnpike conditions are established. The stability of the turnpike phenomenon for this class of problems is investigated further in Chaps. 8 and 9.
Publisher: Springer Nature
ISBN: 9811622523
Category : Mathematics
Languages : en
Pages : 354
Book Description
This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson–Solow–Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solow, and Thirukodikaval Nilakanta Srinivasan and was further studied by Robinson, Nobuo Okishio, and Joseph Stiglitz. Since then, the study of the RSS model has become an important element of economic dynamics. In this book, two large general classes of optimal control problems, both of them containing the RSS model as a particular case, are presented for study. For these two classes, a turnpike theory is developed and the existence of solutions to the corresponding infinite horizon optimal control problems is established. The book contains 9 chapters. Chapter 1 discusses turnpike properties for some optimal control problems that are known in the literature, including problems corresponding to the RSS model. The first class of optimal control problems is studied in Chaps. 2–6. In Chap. 2, infinite horizon optimal control problems with nonautonomous optimality criteria are considered. The utility functions, which determine the optimality criterion, are nonconcave. This class of models contains the RSS model as a particular case. The stability of the turnpike phenomenon of the one-dimensional nonautonomous concave RSS model is analyzed in Chap. 3. The following chapter takes up the study of a class of autonomous nonconcave optimal control problems, a subclass of problems considered in Chap. 2. The equivalence of the turnpike property and the asymptotic turnpike property, as well as the stability of the turnpike phenomenon, is established. Turnpike conditions and the stability of the turnpike phenomenon for nonautonomous problems are examined in Chap. 5, with Chap. 6 devoted to the study of the turnpike properties for the one-dimensional nonautonomous nonconcave RSS model. The utility functions, which determine the optimality criterion, are nonconcave. The class of RSS models is identified with a complete metric space of utility functions. Using the Baire category approach, the turnpike phenomenon is shown to hold for most of the models. Chapter 7 begins the study of the second large class of autonomous optimal control problems, and turnpike conditions are established. The stability of the turnpike phenomenon for this class of problems is investigated further in Chaps. 8 and 9.
Optimal Control Problems Arising in Mathematical Economics
Author: Alexander J. Zaslavski
Publisher: Springer Nature
ISBN: 981169298X
Category : Mathematics
Languages : en
Pages : 387
Book Description
This book is devoted to the study of two large classes of discrete-time optimal control problems arising in mathematical economics. Nonautonomous optimal control problems of the first class are determined by a sequence of objective functions and sequence of constraint maps. They correspond to a general model of economic growth. We are interested in turnpike properties of approximate solutions and in the stability of the turnpike phenomenon under small perturbations of objective functions and constraint maps. The second class of autonomous optimal control problems corresponds to another general class of models of economic dynamics which includes the Robinson–Solow–Srinivasan model as a particular case. In Chap. 1 we discuss turnpike properties for a large class of discrete-time optimal control problems studied in the literature and for the Robinson–Solow–Srinivasan model. In Chap. 2 we introduce the first class of optimal control problems and study its turnpike property. This class of problems is also discussed in Chaps. 3–6. In Chap. 3 we study the stability of the turnpike phenomenon under small perturbations of the objective functions. Analogous results for problems with discounting are considered in Chap. 4. In Chap. 5 we study the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. Analogous results for problems with discounting are established in Chap. 6. The results of Chaps. 5 and 6 are new. The second class of problems is studied in Chaps. 7–9. In Chap. 7 we study the turnpike properties. The stability of the turnpike phenomenon under small perturbations of the objective functions is established in Chap. 8. In Chap. 9 we establish the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. The results of Chaps. 8 and 9 are new. In Chap. 10 we study optimal control problems related to a model of knowledge-based endogenous economic growth and show the existence of trajectories of unbounded economic growth and provide estimates for the growth rate.
Publisher: Springer Nature
ISBN: 981169298X
Category : Mathematics
Languages : en
Pages : 387
Book Description
This book is devoted to the study of two large classes of discrete-time optimal control problems arising in mathematical economics. Nonautonomous optimal control problems of the first class are determined by a sequence of objective functions and sequence of constraint maps. They correspond to a general model of economic growth. We are interested in turnpike properties of approximate solutions and in the stability of the turnpike phenomenon under small perturbations of objective functions and constraint maps. The second class of autonomous optimal control problems corresponds to another general class of models of economic dynamics which includes the Robinson–Solow–Srinivasan model as a particular case. In Chap. 1 we discuss turnpike properties for a large class of discrete-time optimal control problems studied in the literature and for the Robinson–Solow–Srinivasan model. In Chap. 2 we introduce the first class of optimal control problems and study its turnpike property. This class of problems is also discussed in Chaps. 3–6. In Chap. 3 we study the stability of the turnpike phenomenon under small perturbations of the objective functions. Analogous results for problems with discounting are considered in Chap. 4. In Chap. 5 we study the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. Analogous results for problems with discounting are established in Chap. 6. The results of Chaps. 5 and 6 are new. The second class of problems is studied in Chaps. 7–9. In Chap. 7 we study the turnpike properties. The stability of the turnpike phenomenon under small perturbations of the objective functions is established in Chap. 8. In Chap. 9 we establish the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. The results of Chaps. 8 and 9 are new. In Chap. 10 we study optimal control problems related to a model of knowledge-based endogenous economic growth and show the existence of trajectories of unbounded economic growth and provide estimates for the growth rate.
Turnpike Theory for the Robinson–Solow–Srinivasan Model
Author: Alexander J. Zaslavski
Publisher: Springer Nature
ISBN: 3030603075
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book is devoted to the study of a class of optimal control problems arising in mathematical economics, related to the Robinson–Solow–Srinivasan (RSS) model. It will be useful for researches interested in the turnpike theory, infinite horizon optimal control and their applications, and mathematical economists. The RSS is a well-known model of economic dynamics that was introduced in the 1960s and as many other models of economic dynamics, the RSS model is determined by an objective function (a utility function) and a set-valued mapping (a technology map). The set-valued map generates a dynamical system whose trajectories are under consideration and the objective function determines an optimality criterion. The goal is to find optimal trajectories of the dynamical system, using the optimality criterion. Chapter 1 discusses turnpike properties for some classes of discrete time optimal control problems. Chapter 2 present the description of the RSS model and discuss its basic properties. Infinite horizon optimal control problems, related to the RSS model are studied in Chapter 3. Turnpike properties for the RSS model are analyzed in Chapter 4. Chapter 5 studies infinite horizon optimal control problems related to the RSS model with a nonconcave utility function. Chapter 6 focuses on infinite horizon optimal control problems with nonautonomous optimality criterions. Chapter 7 contains turnpike results for a class of discrete-time optimal control problems. Chapter 8 discusses the RSS model and compares different optimality criterions. Chapter 9 is devoted to the study of the turnpike properties for the RSS model. In Chapter 10 the one-dimensional autonomous RSS model is considered and the continuous time RSS model is studied in Chapter 11.
Publisher: Springer Nature
ISBN: 3030603075
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book is devoted to the study of a class of optimal control problems arising in mathematical economics, related to the Robinson–Solow–Srinivasan (RSS) model. It will be useful for researches interested in the turnpike theory, infinite horizon optimal control and their applications, and mathematical economists. The RSS is a well-known model of economic dynamics that was introduced in the 1960s and as many other models of economic dynamics, the RSS model is determined by an objective function (a utility function) and a set-valued mapping (a technology map). The set-valued map generates a dynamical system whose trajectories are under consideration and the objective function determines an optimality criterion. The goal is to find optimal trajectories of the dynamical system, using the optimality criterion. Chapter 1 discusses turnpike properties for some classes of discrete time optimal control problems. Chapter 2 present the description of the RSS model and discuss its basic properties. Infinite horizon optimal control problems, related to the RSS model are studied in Chapter 3. Turnpike properties for the RSS model are analyzed in Chapter 4. Chapter 5 studies infinite horizon optimal control problems related to the RSS model with a nonconcave utility function. Chapter 6 focuses on infinite horizon optimal control problems with nonautonomous optimality criterions. Chapter 7 contains turnpike results for a class of discrete-time optimal control problems. Chapter 8 discusses the RSS model and compares different optimality criterions. Chapter 9 is devoted to the study of the turnpike properties for the RSS model. In Chapter 10 the one-dimensional autonomous RSS model is considered and the continuous time RSS model is studied in Chapter 11.
Infinite-Horizon Optimal Control in the Discrete-Time Framework
Author: Joël Blot
Publisher: Springer Science & Business Media
ISBN: 1461490383
Category : Mathematics
Languages : en
Pages : 130
Book Description
In this book the authors take a rigorous look at the infinite-horizon discrete-time optimal control theory from the viewpoint of Pontryagin’s principles. Several Pontryagin principles are described which govern systems and various criteria which define the notions of optimality, along with a detailed analysis of how each Pontryagin principle relate to each other. The Pontryagin principle is examined in a stochastic setting and results are given which generalize Pontryagin’s principles to multi-criteria problems. Infinite-Horizon Optimal Control in the Discrete-Time Framework is aimed toward researchers and PhD students in various scientific fields such as mathematics, applied mathematics, economics, management, sustainable development (such as, of fisheries and of forests), and Bio-medical sciences who are drawn to infinite-horizon discrete-time optimal control problems.
Publisher: Springer Science & Business Media
ISBN: 1461490383
Category : Mathematics
Languages : en
Pages : 130
Book Description
In this book the authors take a rigorous look at the infinite-horizon discrete-time optimal control theory from the viewpoint of Pontryagin’s principles. Several Pontryagin principles are described which govern systems and various criteria which define the notions of optimality, along with a detailed analysis of how each Pontryagin principle relate to each other. The Pontryagin principle is examined in a stochastic setting and results are given which generalize Pontryagin’s principles to multi-criteria problems. Infinite-Horizon Optimal Control in the Discrete-Time Framework is aimed toward researchers and PhD students in various scientific fields such as mathematics, applied mathematics, economics, management, sustainable development (such as, of fisheries and of forests), and Bio-medical sciences who are drawn to infinite-horizon discrete-time optimal control problems.
Optimal Control Problems Arising in Forest Management
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3030235874
Category : Mathematics
Languages : en
Pages : 141
Book Description
This book is devoted to the study of optimal control problems arising in forest management, an important and fascinating topic in mathematical economics studied by many researchers over the years. The volume studies the forest management problem by analyzing a class of optimal control problems that contains it and showing the existence of optimal solutions over infinite horizon. It also studies the structure of approximate solutions on finite intervals and their turnpike properties, as well as the stability of the turnpike phenomenon and the structure of approximate solutions on finite intervals in the regions close to the end points. The book is intended for mathematicians interested in the optimization theory, optimal control and their applications to the economic theory.
Publisher: Springer
ISBN: 3030235874
Category : Mathematics
Languages : en
Pages : 141
Book Description
This book is devoted to the study of optimal control problems arising in forest management, an important and fascinating topic in mathematical economics studied by many researchers over the years. The volume studies the forest management problem by analyzing a class of optimal control problems that contains it and showing the existence of optimal solutions over infinite horizon. It also studies the structure of approximate solutions on finite intervals and their turnpike properties, as well as the stability of the turnpike phenomenon and the structure of approximate solutions on finite intervals in the regions close to the end points. The book is intended for mathematicians interested in the optimization theory, optimal control and their applications to the economic theory.
Turnpike Conditions in Infinite Dimensional Optimal Control
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3030201783
Category : Mathematics
Languages : en
Pages : 578
Book Description
This book provides a comprehensive study of turnpike phenomenon arising in optimal control theory. The focus is on individual (non-generic) turnpike results which are both mathematically significant and have numerous applications in engineering and economic theory. All results obtained in the book are new. New approaches, techniques, and methods are rigorously presented and utilize research from finite-dimensional variational problems and discrete-time optimal control problems to find the necessary conditions for the turnpike phenomenon in infinite dimensional spaces. The semigroup approach is employed in the discussion as well as PDE descriptions of continuous-time dynamics. The main results on sufficient and necessary conditions for the turnpike property are completely proved and the numerous illustrative examples support the material for the broad spectrum of experts. Mathematicians interested in the calculus of variations, optimal control and in applied functional analysis will find this book a useful guide to the turnpike phenomenon in infinite dimensional spaces. Experts in economic and engineering modeling as well as graduate students will also benefit from the developed techniques and obtained results.
Publisher: Springer
ISBN: 3030201783
Category : Mathematics
Languages : en
Pages : 578
Book Description
This book provides a comprehensive study of turnpike phenomenon arising in optimal control theory. The focus is on individual (non-generic) turnpike results which are both mathematically significant and have numerous applications in engineering and economic theory. All results obtained in the book are new. New approaches, techniques, and methods are rigorously presented and utilize research from finite-dimensional variational problems and discrete-time optimal control problems to find the necessary conditions for the turnpike phenomenon in infinite dimensional spaces. The semigroup approach is employed in the discussion as well as PDE descriptions of continuous-time dynamics. The main results on sufficient and necessary conditions for the turnpike property are completely proved and the numerous illustrative examples support the material for the broad spectrum of experts. Mathematicians interested in the calculus of variations, optimal control and in applied functional analysis will find this book a useful guide to the turnpike phenomenon in infinite dimensional spaces. Experts in economic and engineering modeling as well as graduate students will also benefit from the developed techniques and obtained results.
Turnpike Theory of Continuous-Time Linear Optimal Control Problems
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3319191411
Category : Mathematics
Languages : en
Pages : 300
Book Description
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous convex smooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integrands.
Publisher: Springer
ISBN: 3319191411
Category : Mathematics
Languages : en
Pages : 300
Book Description
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous convex smooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integrands.