Author: Andrew Sleeper
Publisher: McGraw Hill Professional
ISBN: 0071762302
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Need to learn Minitab? Problem Solved! Get started using Minitab right way with help from this hands-on guide. Minitab Demystified walks you through essential Minitab features and shows you how to apply them to solve statistical analysis problems. Featuring coverage of Minitab 16, this practical guide explores the Minitab interface and the full range of Minitab graphics, Distribution models, statistical intervals, hypothesis testing, and sample size calculations are clearly explained. The book covers modeling tools of regression and the design of experiments (DOE) as well as the industrial quality tools of measurement systems analysis, control charts, capability analysis, acceptance sampling, and reliability analysis. Detailed examples and concise explanations make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce key concepts. It's a no-brainer! You'll learn about: Accessing powerful Minitab functions with the Minitab assistant Confidence, prediction, and tolerance intervals Designing and analyzing experiments with hard-to-change variables Statistical process control (SPC), Six Sigma applications, and quality control Predicting the economic impact of sampling Analyzing life data with additional variables Simple enough for a beginner, challenging enough for an advanced student, and thorough enough for a Six Sigma professional, Minitab Demystified is your shortcut to statistical analysis success!
Minitab Demystified
Author: Andrew Sleeper
Publisher: McGraw Hill Professional
ISBN: 0071762302
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Need to learn Minitab? Problem Solved! Get started using Minitab right way with help from this hands-on guide. Minitab Demystified walks you through essential Minitab features and shows you how to apply them to solve statistical analysis problems. Featuring coverage of Minitab 16, this practical guide explores the Minitab interface and the full range of Minitab graphics, Distribution models, statistical intervals, hypothesis testing, and sample size calculations are clearly explained. The book covers modeling tools of regression and the design of experiments (DOE) as well as the industrial quality tools of measurement systems analysis, control charts, capability analysis, acceptance sampling, and reliability analysis. Detailed examples and concise explanations make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce key concepts. It's a no-brainer! You'll learn about: Accessing powerful Minitab functions with the Minitab assistant Confidence, prediction, and tolerance intervals Designing and analyzing experiments with hard-to-change variables Statistical process control (SPC), Six Sigma applications, and quality control Predicting the economic impact of sampling Analyzing life data with additional variables Simple enough for a beginner, challenging enough for an advanced student, and thorough enough for a Six Sigma professional, Minitab Demystified is your shortcut to statistical analysis success!
Publisher: McGraw Hill Professional
ISBN: 0071762302
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Need to learn Minitab? Problem Solved! Get started using Minitab right way with help from this hands-on guide. Minitab Demystified walks you through essential Minitab features and shows you how to apply them to solve statistical analysis problems. Featuring coverage of Minitab 16, this practical guide explores the Minitab interface and the full range of Minitab graphics, Distribution models, statistical intervals, hypothesis testing, and sample size calculations are clearly explained. The book covers modeling tools of regression and the design of experiments (DOE) as well as the industrial quality tools of measurement systems analysis, control charts, capability analysis, acceptance sampling, and reliability analysis. Detailed examples and concise explanations make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce key concepts. It's a no-brainer! You'll learn about: Accessing powerful Minitab functions with the Minitab assistant Confidence, prediction, and tolerance intervals Designing and analyzing experiments with hard-to-change variables Statistical process control (SPC), Six Sigma applications, and quality control Predicting the economic impact of sampling Analyzing life data with additional variables Simple enough for a beginner, challenging enough for an advanced student, and thorough enough for a Six Sigma professional, Minitab Demystified is your shortcut to statistical analysis success!
Six Sigma Statistics with EXCEL and MINITAB
Author: Issa Bass
Publisher: McGraw Hill Professional
ISBN: 007154268X
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
Master the Statistical Techniques for Six Sigma Operations, While Boosting Your Excel and Minitab Skills! Now with the help of this “one-stop” resource, operations and production managers can learn all the powerful statistical techniques for Six Sigma operations, while becoming proficient at Excel and Minitab at the same time. Six Sigma Statistics with Excel and Minitab offers a complete guide to Six Sigma statistical methods, plus expert coverage of Excel and Minitab, two of today's most popular programs for statistical analysis and data visualization. Written by a seasoned Six Sigma Master Black Belt, the book explains how to create and interpret dot plots, histograms, and box plots using Minitab...decide on sampling strategies, sample size, and confidence intervals...apply hypothesis tests to compare variance, means, and proportions...conduct a regression and residual analysis...design and analyze an experiment...and much more. Filled with clear, concise accounts of the theory for each statistical method presented, Six Sigma Statistics with Excel and Minitab features: Easy-to-follow explanations of powerful Six Sigma tools A wealth of exercises and case studies 200 graphical illustrations for Excel and Minitab Essential for achieving Six Sigma goals in any organization, Six Sigma Statistics with Excel and Minitab is a unique, skills-building toolkit for mastering a wide range of vital statistical techniques, and for capitalizing on the potential of Excel and Minitab. Six Sigma Statistical with Excel and Minitab offers operations and production managers a complete guide to Six Sigma statistical techniques, together with expert coverage of Excel and Minitab, two of today's most popular programs for statistical analysis and data visualization. Written by Issa Bass, a Six Sigma Master Black Belt with years of hands-on experience in industry, this on-target resource takes readers through the application of each Six Sigma statistical tool, while presenting a straightforward tutorial for effectively utilizing Excel and Minitab. With the help of this essential reference, managers can: Acquire the basic tools for data collection, organization, and description Learn the fundamental principles of probability Create and interpret dot plots, histograms, and box plots using Minitab Decide on sampling strategies, sample size, and confidence intervals Apply hypothesis tests to compare variance, means, and proportions Stay on top of production processes with statistical process control Use process capability analysis to ensure that processes meet customers' expectations Employ analysis of variance to make inferences about more than two population means Conduct a regression and residual analysis Design and analyze an experiment In addition, Six Sigma Statistics with Excel and Minitab enables you to develop a better understanding of the Taguchi Method...use measurement system analysis to find out if measurement processes are accurate...discover how to test ordinal or nominal data with nonparametric statistics...and apply the full range of basic quality tools. Filled with step-by-step exercises, graphical illustrations, and screen shots for performing Six Sigma techniques on Excel and Minitab, the book also provides clear, concise explanations of the theory for each of the statistical tools presented. Authoritative and comprehensive, Six Sigma Statistics with Excel and Minitab is a valuable skills-building resource for mastering all the statistical techniques for Six Sigma operations, while harnessing the power of Excel and Minitab.
Publisher: McGraw Hill Professional
ISBN: 007154268X
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
Master the Statistical Techniques for Six Sigma Operations, While Boosting Your Excel and Minitab Skills! Now with the help of this “one-stop” resource, operations and production managers can learn all the powerful statistical techniques for Six Sigma operations, while becoming proficient at Excel and Minitab at the same time. Six Sigma Statistics with Excel and Minitab offers a complete guide to Six Sigma statistical methods, plus expert coverage of Excel and Minitab, two of today's most popular programs for statistical analysis and data visualization. Written by a seasoned Six Sigma Master Black Belt, the book explains how to create and interpret dot plots, histograms, and box plots using Minitab...decide on sampling strategies, sample size, and confidence intervals...apply hypothesis tests to compare variance, means, and proportions...conduct a regression and residual analysis...design and analyze an experiment...and much more. Filled with clear, concise accounts of the theory for each statistical method presented, Six Sigma Statistics with Excel and Minitab features: Easy-to-follow explanations of powerful Six Sigma tools A wealth of exercises and case studies 200 graphical illustrations for Excel and Minitab Essential for achieving Six Sigma goals in any organization, Six Sigma Statistics with Excel and Minitab is a unique, skills-building toolkit for mastering a wide range of vital statistical techniques, and for capitalizing on the potential of Excel and Minitab. Six Sigma Statistical with Excel and Minitab offers operations and production managers a complete guide to Six Sigma statistical techniques, together with expert coverage of Excel and Minitab, two of today's most popular programs for statistical analysis and data visualization. Written by Issa Bass, a Six Sigma Master Black Belt with years of hands-on experience in industry, this on-target resource takes readers through the application of each Six Sigma statistical tool, while presenting a straightforward tutorial for effectively utilizing Excel and Minitab. With the help of this essential reference, managers can: Acquire the basic tools for data collection, organization, and description Learn the fundamental principles of probability Create and interpret dot plots, histograms, and box plots using Minitab Decide on sampling strategies, sample size, and confidence intervals Apply hypothesis tests to compare variance, means, and proportions Stay on top of production processes with statistical process control Use process capability analysis to ensure that processes meet customers' expectations Employ analysis of variance to make inferences about more than two population means Conduct a regression and residual analysis Design and analyze an experiment In addition, Six Sigma Statistics with Excel and Minitab enables you to develop a better understanding of the Taguchi Method...use measurement system analysis to find out if measurement processes are accurate...discover how to test ordinal or nominal data with nonparametric statistics...and apply the full range of basic quality tools. Filled with step-by-step exercises, graphical illustrations, and screen shots for performing Six Sigma techniques on Excel and Minitab, the book also provides clear, concise explanations of the theory for each of the statistical tools presented. Authoritative and comprehensive, Six Sigma Statistics with Excel and Minitab is a valuable skills-building resource for mastering all the statistical techniques for Six Sigma operations, while harnessing the power of Excel and Minitab.
Applied Statistics Manual
Author: Matthew A. Barsalou
Publisher: Quality Press
ISBN: 087389975X
Category : Education
Languages : en
Pages : 371
Book Description
This book was written to provide guidance for those who need to apply statistical methods for practical use. While the book provides detailed guidance on the use of Minitab for calculation, simply entering data into a software program is not sufficient to reliably gain knowledge from data. The software will provide an answer, but the answer may be wrong if the sample was not taken properly, the data was unsuitable for the statistical test that was performed, or the wrong test was selected. It is also possible that the answer will be correct, but misinterpreted. This book provides both guidance in applying the statistical methods described as well as instructions for performing calculations without a statistical software program such as Minitab. One of the authors is a professional statistician who spent nearly 13 years working at Minitab and the other is an experienced and certified Lean Six Sigma Master Black Belt. Together, they strive to present the knowledge of a statistician in a format that can be easily understood and applied by non-statisticians facing real-world problems. Their guidance is provided with the goal of making data analysis accessible and practical. Rather than focusing on theoretical concepts, the book delivers only the information that is critical to success for the practitioner. It is a thorough guide for those who have not yet been exposed to the value of statistics, as well as a reliable reference for those who have been introduced to statistics but are not yet confident in their abilities.
Publisher: Quality Press
ISBN: 087389975X
Category : Education
Languages : en
Pages : 371
Book Description
This book was written to provide guidance for those who need to apply statistical methods for practical use. While the book provides detailed guidance on the use of Minitab for calculation, simply entering data into a software program is not sufficient to reliably gain knowledge from data. The software will provide an answer, but the answer may be wrong if the sample was not taken properly, the data was unsuitable for the statistical test that was performed, or the wrong test was selected. It is also possible that the answer will be correct, but misinterpreted. This book provides both guidance in applying the statistical methods described as well as instructions for performing calculations without a statistical software program such as Minitab. One of the authors is a professional statistician who spent nearly 13 years working at Minitab and the other is an experienced and certified Lean Six Sigma Master Black Belt. Together, they strive to present the knowledge of a statistician in a format that can be easily understood and applied by non-statisticians facing real-world problems. Their guidance is provided with the goal of making data analysis accessible and practical. Rather than focusing on theoretical concepts, the book delivers only the information that is critical to success for the practitioner. It is a thorough guide for those who have not yet been exposed to the value of statistics, as well as a reliable reference for those who have been introduced to statistics but are not yet confident in their abilities.
Statistics for Censored Environmental Data Using Minitab and R
Author: Dennis R. Helsel
Publisher: John Wiley & Sons
ISBN: 0470479884
Category : Mathematics
Languages : en
Pages : 344
Book Description
Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate course on environmental statistics, and . . . a 'must-have' desk reference for environmental practitioners dealing with censored datasets." —Vadose Zone Journal Statistics for Censored Environmental Data Using Minitab® and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab® into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab® and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab® and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for??environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.
Publisher: John Wiley & Sons
ISBN: 0470479884
Category : Mathematics
Languages : en
Pages : 344
Book Description
Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate course on environmental statistics, and . . . a 'must-have' desk reference for environmental practitioners dealing with censored datasets." —Vadose Zone Journal Statistics for Censored Environmental Data Using Minitab® and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab® into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab® and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab® and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for??environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.
Statistics and Probability with Applications for Engineers and Scientists
Author: Bhisham C Gupta
Publisher: John Wiley & Sons
ISBN: 1118522206
Category : Mathematics
Languages : en
Pages : 898
Book Description
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Publisher: John Wiley & Sons
ISBN: 1118522206
Category : Mathematics
Languages : en
Pages : 898
Book Description
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Statistical Methods for Industrial Process Control
Author: David .C. Drain
Publisher: CRC Press
ISBN: 9780412085116
Category : Mathematics
Languages : en
Pages : 476
Book Description
To practice engineering effectively, engineers must need to have a working knowledge of statistical concepts and methods. What they do not need is a background heavy on statistical theory and number crunching. Statistical Methods for Industrial Process Control provides the practical statistics foundation engineers can immediately apply to the work they do every day, regardless of their industry or specialty. The author illustrates statistical concepts and methods with authentic semiconductor manufacturing process examples-integrated circuit fabrication is an exceedingly rich medium for communicating statistical concepts. However, once learned, these concepts and methods can easily be extended and applied to a variety of other industries. The text emphasizes the application of statistical tools, rather than statistical theory. Modern advances in statistical software have made tedious computations and formula memorization unnecessary. Therefore, the author demonstrates software use throughout the book and supplies MINITAB examples and SAS programs. Review problems at the end of each chapter challenge and deepen readers' understanding of the material. Statistical Methods for Industrial Process Control addresses topics that support the work engineers do, rather than educate them as statisticians, and these topics also reflect modern usage. It effectively introduces novice engineers to a fascinating industry and enables experienced engineers to build upon their existing knowledge and learn new skills.
Publisher: CRC Press
ISBN: 9780412085116
Category : Mathematics
Languages : en
Pages : 476
Book Description
To practice engineering effectively, engineers must need to have a working knowledge of statistical concepts and methods. What they do not need is a background heavy on statistical theory and number crunching. Statistical Methods for Industrial Process Control provides the practical statistics foundation engineers can immediately apply to the work they do every day, regardless of their industry or specialty. The author illustrates statistical concepts and methods with authentic semiconductor manufacturing process examples-integrated circuit fabrication is an exceedingly rich medium for communicating statistical concepts. However, once learned, these concepts and methods can easily be extended and applied to a variety of other industries. The text emphasizes the application of statistical tools, rather than statistical theory. Modern advances in statistical software have made tedious computations and formula memorization unnecessary. Therefore, the author demonstrates software use throughout the book and supplies MINITAB examples and SAS programs. Review problems at the end of each chapter challenge and deepen readers' understanding of the material. Statistical Methods for Industrial Process Control addresses topics that support the work engineers do, rather than educate them as statisticians, and these topics also reflect modern usage. It effectively introduces novice engineers to a fascinating industry and enables experienced engineers to build upon their existing knowledge and learn new skills.
Six Sigma Quality Improvement with Minitab
Author: G. Robin Henderson
Publisher: John Wiley & Sons
ISBN: 1119976189
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book aims to enable readers to understand and implement, via the widely used statistical software package Minitab (Release 16), statistical methods fundamental to the Six Sigma approach to the continuous improvement of products, processes and services. The second edition includes the following new material: Pareto charts and Cause-and-Effect diagrams Time-weighted control charts cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) Multivariate control charts Acceptance sampling by attributes and variables (not provided in Release 14) Tests of association using the chi-square distribution Logistic regression Taguchi experimental designs
Publisher: John Wiley & Sons
ISBN: 1119976189
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book aims to enable readers to understand and implement, via the widely used statistical software package Minitab (Release 16), statistical methods fundamental to the Six Sigma approach to the continuous improvement of products, processes and services. The second edition includes the following new material: Pareto charts and Cause-and-Effect diagrams Time-weighted control charts cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) Multivariate control charts Acceptance sampling by attributes and variables (not provided in Release 14) Tests of association using the chi-square distribution Logistic regression Taguchi experimental designs
Statistical Quality Control
Author: Bhisham C. Gupta
Publisher: John Wiley & Sons
ISBN: 1119671728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
STATISTICAL QUALITY CONTROL Provides a basic understanding of statistical quality control (SQC) and demonstrates how to apply the techniques of SQC to improve the quality of products in various sectors This book introduces Statistical Quality Control and the elements of Six Sigma Methodology, illustrating the widespread applications that both have for a multitude of areas, including manufacturing, finance, transportation, and more. It places emphasis on both the theory and application of various SQC techniques and offers a large number of examples using data encountered in real life situations to support each theoretical concept. Statistical Quality Control: Using MINITAB, R, JMP and Python begins with a brief discussion of the different types of data encountered in various fields of statistical applications and introduces graphical and numerical tools needed to conduct preliminary analysis of the data. It then discusses the basic concept of statistical quality control (SQC) and Six Sigma Methodology and examines the different types of sampling methods encountered when sampling schemes are used to study certain populations. The book also covers Phase 1 Control Charts for variables and attributes; Phase II Control Charts to detect small shifts; the various types of Process Capability Indices (CPI); certain aspects of Measurement System Analysis (MSA); various aspects of PRE-control; and more. This helpful guide also Focuses on the learning and understanding of statistical quality control for second and third year undergraduates and practitioners in the field Discusses aspects of Six Sigma Methodology Teaches readers to use MINITAB, R, JMP and Python to create and analyze charts Requires no previous knowledge of statistical theory Is supplemented by an instructor-only book companion site featuring data sets and a solutions manual to all problems, as well as a student book companion site that includes data sets and a solutions manual to all odd-numbered problems Statistical Quality Control: Using MINITAB, R, JMP and Python is an excellent book for students studying engineering, statistics, management studies, and other related fields and who are interested in learning various techniques of statistical quality control. It also serves as a desk reference for practitioners who work to improve quality in various sectors, such as manufacturing, service, transportation, medical, oil, and financial institutions. It‘s also useful for those who use Six Sigma techniques to improve the quality of products in such areas.
Publisher: John Wiley & Sons
ISBN: 1119671728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
STATISTICAL QUALITY CONTROL Provides a basic understanding of statistical quality control (SQC) and demonstrates how to apply the techniques of SQC to improve the quality of products in various sectors This book introduces Statistical Quality Control and the elements of Six Sigma Methodology, illustrating the widespread applications that both have for a multitude of areas, including manufacturing, finance, transportation, and more. It places emphasis on both the theory and application of various SQC techniques and offers a large number of examples using data encountered in real life situations to support each theoretical concept. Statistical Quality Control: Using MINITAB, R, JMP and Python begins with a brief discussion of the different types of data encountered in various fields of statistical applications and introduces graphical and numerical tools needed to conduct preliminary analysis of the data. It then discusses the basic concept of statistical quality control (SQC) and Six Sigma Methodology and examines the different types of sampling methods encountered when sampling schemes are used to study certain populations. The book also covers Phase 1 Control Charts for variables and attributes; Phase II Control Charts to detect small shifts; the various types of Process Capability Indices (CPI); certain aspects of Measurement System Analysis (MSA); various aspects of PRE-control; and more. This helpful guide also Focuses on the learning and understanding of statistical quality control for second and third year undergraduates and practitioners in the field Discusses aspects of Six Sigma Methodology Teaches readers to use MINITAB, R, JMP and Python to create and analyze charts Requires no previous knowledge of statistical theory Is supplemented by an instructor-only book companion site featuring data sets and a solutions manual to all problems, as well as a student book companion site that includes data sets and a solutions manual to all odd-numbered problems Statistical Quality Control: Using MINITAB, R, JMP and Python is an excellent book for students studying engineering, statistics, management studies, and other related fields and who are interested in learning various techniques of statistical quality control. It also serves as a desk reference for practitioners who work to improve quality in various sectors, such as manufacturing, service, transportation, medical, oil, and financial institutions. It‘s also useful for those who use Six Sigma techniques to improve the quality of products in such areas.
Statistics for Six Sigma Green Belts with Minitab and JMP
Author: David Levine
Publisher: Pearson Education
ISBN: 9780137017126
Category : Business & Economics
Languages : en
Pages : 0
Book Description
The only book on the market that provides a simple nonmathematical presentation of the statistics needed by Six Sigma Green Belts. Every concept is explained in plain English with a minimum of mathematical symbols. Includes real-world examples, step by step instructions and sample output for Minitab and JMP software as well as downloadble, ready to use data sets and templates. Includes applications to service industries to help managers understand the role of Six Sigma in nonmanufacturing industries. Acknowledgments xvii About the Author xix Preface xxi Chapter 1: Fundamentals of Six Sigma 1 Chapter 2: Introduction to Statistics 7 Chapter 3: Presenting Data in Charts and Tables 23 Chapter 4: Descriptive Statistics 39 Chapter 5: Probability and Probability Distributions 59 Chapter 6: Sampling Distributions and Confidence Intervals 95 Chapter 7: Hypothesis Testing 113 Chapter 8: Design of Experiments 157 Chapter 9: Simple Linear Regression 211 Chapter 10: Multiple Regression 241 Chapter 11: Control Charts for Six Sigma Management 279 Appendix A: Review of Arithmetic and Algebra 321 Appendix B: Summation Notation 329 Appendix C: Statistical Tables 333 Appendix D: Documentation of Data Files 347 Glossary 349 Index 359
Publisher: Pearson Education
ISBN: 9780137017126
Category : Business & Economics
Languages : en
Pages : 0
Book Description
The only book on the market that provides a simple nonmathematical presentation of the statistics needed by Six Sigma Green Belts. Every concept is explained in plain English with a minimum of mathematical symbols. Includes real-world examples, step by step instructions and sample output for Minitab and JMP software as well as downloadble, ready to use data sets and templates. Includes applications to service industries to help managers understand the role of Six Sigma in nonmanufacturing industries. Acknowledgments xvii About the Author xix Preface xxi Chapter 1: Fundamentals of Six Sigma 1 Chapter 2: Introduction to Statistics 7 Chapter 3: Presenting Data in Charts and Tables 23 Chapter 4: Descriptive Statistics 39 Chapter 5: Probability and Probability Distributions 59 Chapter 6: Sampling Distributions and Confidence Intervals 95 Chapter 7: Hypothesis Testing 113 Chapter 8: Design of Experiments 157 Chapter 9: Simple Linear Regression 211 Chapter 10: Multiple Regression 241 Chapter 11: Control Charts for Six Sigma Management 279 Appendix A: Review of Arithmetic and Algebra 321 Appendix B: Summation Notation 329 Appendix C: Statistical Tables 333 Appendix D: Documentation of Data Files 347 Glossary 349 Index 359
Introduction to Bayesian Statistics
Author: William M. Bolstad
Publisher: John Wiley & Sons
ISBN: 1118593227
Category : Mathematics
Languages : en
Pages : 608
Book Description
"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Publisher: John Wiley & Sons
ISBN: 1118593227
Category : Mathematics
Languages : en
Pages : 608
Book Description
"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.