Applied Economic Forecasting using Time Series Methods

Applied Economic Forecasting using Time Series Methods PDF Author: Eric Ghysels
Publisher: Oxford University Press
ISBN: 0190622024
Category : Business & Economics
Languages : en
Pages : 617

Get Book Here

Book Description
Economic forecasting is a key ingredient of decision making both in the public and in the private sector. Because economic outcomes are the result of a vast, complex, dynamic and stochastic system, forecasting is very difficult and forecast errors are unavoidable. Because forecast precision and reliability can be enhanced by the use of proper econometric models and methods, this innovative book provides an overview of both theory and applications. Undergraduate and graduate students learning basic and advanced forecasting techniques will be able to build from strong foundations, and researchers in public and private institutions will have access to the most recent tools and insights. Readers will gain from the frequent examples that enhance understanding of how to apply techniques, first by using stylized settings and then by real data applications--focusing on macroeconomic and financial topics. This is first and foremost a book aimed at applying time series methods to solve real-world forecasting problems. Applied Economic Forecasting using Time Series Methods starts with a brief review of basic regression analysis with a focus on specific regression topics relevant for forecasting, such as model specification errors, dynamic models and their predictive properties as well as forecast evaluation and combination. Several chapters cover univariate time series models, vector autoregressive models, cointegration and error correction models, and Bayesian methods for estimating vector autoregressive models. A collection of special topics chapters study Threshold and Smooth Transition Autoregressive (TAR and STAR) models, Markov switching regime models, state space models and the Kalman filter, mixed frequency data models, nowcasting, forecasting using large datasets and, finally, volatility models. There are plenty of practical applications in the book and both EViews and R code are available online at authors' website.

Applied Economic Forecasting using Time Series Methods

Applied Economic Forecasting using Time Series Methods PDF Author: Eric Ghysels
Publisher: Oxford University Press
ISBN: 0190622024
Category : Business & Economics
Languages : en
Pages : 617

Get Book Here

Book Description
Economic forecasting is a key ingredient of decision making both in the public and in the private sector. Because economic outcomes are the result of a vast, complex, dynamic and stochastic system, forecasting is very difficult and forecast errors are unavoidable. Because forecast precision and reliability can be enhanced by the use of proper econometric models and methods, this innovative book provides an overview of both theory and applications. Undergraduate and graduate students learning basic and advanced forecasting techniques will be able to build from strong foundations, and researchers in public and private institutions will have access to the most recent tools and insights. Readers will gain from the frequent examples that enhance understanding of how to apply techniques, first by using stylized settings and then by real data applications--focusing on macroeconomic and financial topics. This is first and foremost a book aimed at applying time series methods to solve real-world forecasting problems. Applied Economic Forecasting using Time Series Methods starts with a brief review of basic regression analysis with a focus on specific regression topics relevant for forecasting, such as model specification errors, dynamic models and their predictive properties as well as forecast evaluation and combination. Several chapters cover univariate time series models, vector autoregressive models, cointegration and error correction models, and Bayesian methods for estimating vector autoregressive models. A collection of special topics chapters study Threshold and Smooth Transition Autoregressive (TAR and STAR) models, Markov switching regime models, state space models and the Kalman filter, mixed frequency data models, nowcasting, forecasting using large datasets and, finally, volatility models. There are plenty of practical applications in the book and both EViews and R code are available online at authors' website.

U-MIDAS

U-MIDAS PDF Author: Claudia Foroni
Publisher:
ISBN: 9783865587817
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Complex Systems in Finance and Econometrics

Complex Systems in Finance and Econometrics PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1441977007
Category : Business & Economics
Languages : en
Pages : 919

Get Book Here

Book Description
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.

Nonlinear Time Series Analysis

Nonlinear Time Series Analysis PDF Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 1119264065
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.

Seamless R and C++ Integration with Rcpp

Seamless R and C++ Integration with Rcpp PDF Author: Dirk Eddelbuettel
Publisher: Springer Science & Business Media
ISBN: 146146868X
Category : Computers
Languages : en
Pages : 236

Get Book Here

Book Description
Rcpp is the glue that binds the power and versatility of R with the speed and efficiency of C++. With Rcpp, the transfer of data between R and C++ is nearly seamless, and high-performance statistical computing is finally accessible to most R users. Rcpp should be part of every statistician's toolbox. -- Michael Braun, MIT Sloan School of Management "Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book! -- Søren Højsgaard, Department of Mathematical Sciences, Aalborg University, Denmark "Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++. Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst.

Volatility

Volatility PDF Author: Torben Gustav Andersen
Publisher: Edward Elgar Publishing
ISBN: 9781788110617
Category : Econometrics
Languages : en
Pages : 0

Get Book Here

Book Description
Volatility ranks among the most active and successful areas of research in econometrics and empirical asset pricing finance over the past three decades. This two-volume collection of papers comprises some of the most influential published works from this burgeoning literature, both classic and contemporary. Topics covered include GARCH, stochastic and multivariate volatility models as well as forecasting, evaluation and high-frequency data. Together with an original introduction by the editors, this definitive compilation presents the most important milestones and contributions that helped pave the way to today's understanding of volatility.

Food Price Volatility and Its Implications for Food Security and Policy

Food Price Volatility and Its Implications for Food Security and Policy PDF Author: Matthias Kalkuhl
Publisher: Springer
ISBN: 3319282018
Category : Business & Economics
Languages : en
Pages : 620

Get Book Here

Book Description
This book provides fresh insights into concepts, methods and new research findings on the causes of excessive food price volatility. It also discusses the implications for food security and policy responses to mitigate excessive volatility. The approaches applied by the contributors range from on-the-ground surveys, to panel econometrics and innovative high-frequency time series analysis as well as computational economics methods. It offers policy analysts and decision-makers guidance on dealing with extreme volatility.

Quantitative Methods for Economics and Finance

Quantitative Methods for Economics and Finance PDF Author: J.E. Trinidad-Segovia
Publisher: MDPI
ISBN: 3036501967
Category : Business & Economics
Languages : en
Pages : 418

Get Book Here

Book Description
This book is a collection of papers for the Special Issue “Quantitative Methods for Economics and Finance” of the journal Mathematics. This Special Issue reflects on the latest developments in different fields of economics and finance where mathematics plays a significant role. The book gathers 19 papers on topics such as volatility clusters and volatility dynamic, forecasting, stocks, indexes, cryptocurrencies and commodities, trade agreements, the relationship between volume and price, trading strategies, efficiency, regression, utility models, fraud prediction, or intertemporal choice.

The Oxford Handbook of Economic Forecasting

The Oxford Handbook of Economic Forecasting PDF Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732

Get Book Here

Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

Granularity Theory with Applications to Finance and Insurance

Granularity Theory with Applications to Finance and Insurance PDF Author: Patrick Gagliardini
Publisher: Cambridge University Press
ISBN: 110707083X
Category : Business & Economics
Languages : en
Pages : 203

Get Book Here

Book Description
This book provides the first comprehensive overview of the granularity theory and its usefulness for risk analysis, statistical estimation, and derivative pricing.