Index Theory in Von Neumann Algebras

Index Theory in Von Neumann Algebras PDF Author: Catherine Louise Olsen
Publisher: American Mathematical Soc.
ISBN: 9780821860380
Category : Mathematics
Languages : en
Pages : 80

Get Book Here

Book Description
The object of this paper is to define a natural analytic index function on an arbitrary von Neumann algebra relative to an arbitrary ideal. This index map enables us to develop a complete Fredholm and semi-Fredholm theory in this setting which is parallel to classical Fredholm and semi-Fredholm theory.

Index Theory in Von Neumann Algebras

Index Theory in Von Neumann Algebras PDF Author: Catherine Louise Olsen
Publisher: American Mathematical Soc.
ISBN: 9780821860380
Category : Mathematics
Languages : en
Pages : 80

Get Book Here

Book Description
The object of this paper is to define a natural analytic index function on an arbitrary von Neumann algebra relative to an arbitrary ideal. This index map enables us to develop a complete Fredholm and semi-Fredholm theory in this setting which is parallel to classical Fredholm and semi-Fredholm theory.

Index Theory in Von Neumann Algebras

Index Theory in Von Neumann Algebras PDF Author: Catherine Louise Olsen
Publisher:
ISBN: 9781470407049
Category : Analytic functions
Languages : en
Pages : 71

Get Book Here

Book Description


Lectures on Von Neumann Algebras

Lectures on Von Neumann Algebras PDF Author: Serban Stratila
Publisher: Routledge
ISBN:
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description


Finite Von Neumann Algebras and Masas

Finite Von Neumann Algebras and Masas PDF Author: Allan Sinclair
Publisher: Cambridge University Press
ISBN: 0521719194
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
The first book devoted to the general theory of finite von Neumann algebras.

Higher Index Theory

Higher Index Theory PDF Author: Rufus Willett
Publisher: Cambridge University Press
ISBN: 1108853110
Category : Mathematics
Languages : en
Pages : 595

Get Book Here

Book Description
Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.

C*-Algebras and Operator Theory

C*-Algebras and Operator Theory PDF Author: Gerald J. Murphy
Publisher: Academic Press
ISBN: 0080924964
Category : Mathematics
Languages : en
Pages : 297

Get Book Here

Book Description
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

The Neumann Compendium

The Neumann Compendium PDF Author: John Von Neumann
Publisher: World Scientific
ISBN: 9789810222017
Category : Mathematics
Languages : en
Pages : 768

Get Book Here

Book Description
After three decades since the first nearly complete edition of John von Neumann's papers, this book is a valuable selection of those papers and excerpts of his books that are most characteristic of his activity, and reveal that of his continuous influence.The results receiving the 1994 Nobel Prizes in economy deeply rooted in Neumann's game theory are only minor traces of his exceptionally broad spectrum of creativity and stimulation.The book is organized by the specific subjects-quantum mechanics, ergodic theory, operator algebra, hydrodynamics, economics, computers, science and society. In addition, one paper which was written in German will be translated and published in English for the first time.The sections are introduced by short explanatory notes with an emphasis on recent developments based on von Neumann's contributions. An overall picture is provided by Ulam's, one of his most intimate partners in thinking, 1958 memorial lecture. Facsimilae and translations of some of his personal letters and a newly completed bibliography based on von Neumann's own careful compilation are added.

Quantum Symmetries on Operator Algebras

Quantum Symmetries on Operator Algebras PDF Author: David Emrys Evans
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 854

Get Book Here

Book Description
In the last 20 years, the study of operator algebras has developed from a branch of functional analysis to a central field of mathematics with applications and connections with different areas in both pure mathematics (foliations, index theory, K-theory, cyclic homology, affine Kac--Moody algebras, quantum groups, low dimensional topology) and mathematical physics (integrable theories, statistical mechanics, conformal field theories and the string theories of elementary particles). The theory of operator algebras was initiated by von Neumann and Murray as a tool for studying group representations and as a framework for quantum mechanics, and has since kept in touch with its roots in physics as a framework for quantum statistical mechanics and the formalism of algebraic quantum field theory. However, in 1981, the study of operator algebras took a new turn with the introduction by Vaughan Jones of subfactor theory and remarkable connections were found with knot theory, 3-manifolds, quantum groups and integrable systems in statistical mechanics and conformal field theory. The purpose of this book, one of the first in the area, is to look at these combinatorial-algebraic developments from the perspective of operator algebras; to bring the reader to the frontline of research with the minimum of prerequisites from classical theory.

Von Neumann Algebras

Von Neumann Algebras PDF Author: J. Dixmier
Publisher: Elsevier
ISBN: 0080960154
Category : Mathematics
Languages : en
Pages : 479

Get Book Here

Book Description
In this book, we study, under the name of von Neumann algebras, those algebras generally known as “rings of operators“ or “W*-algebras.“ The new terminology, suggested by J. Dieudonng, is fully justified from the historical point of view. Certain of the results are valid for more general algebras. We have, however systematically avoided this kind of generalization, except when it would facilitate the study of von Neumann algebras themselves. Parts I and I1 comprise those results which at present appear to’be the most useful for applications, although we do not embark on the study of those applications. Part 111, which is more technical, is primarily intended for specialists; it is virtually independent of Part 11.

A Course in Operator Theory

A Course in Operator Theory PDF Author: John B. Conway
Publisher: American Mathematical Soc.
ISBN: 0821820656
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.