Independent Component Analysis

Independent Component Analysis PDF Author: James V. Stone
Publisher: MIT Press
ISBN: 9780262693158
Category : Computers
Languages : en
Pages : 224

Get Book Here

Book Description
A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.

Independent Component Analysis

Independent Component Analysis PDF Author: James V. Stone
Publisher: MIT Press
ISBN: 9780262693158
Category : Computers
Languages : en
Pages : 224

Get Book Here

Book Description
A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.

Independent Component Analysis

Independent Component Analysis PDF Author: Aapo Hyvärinen
Publisher: John Wiley & Sons
ISBN: 0471464198
Category : Science
Languages : en
Pages : 505

Get Book Here

Book Description
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Advances in Independent Component Analysis

Advances in Independent Component Analysis PDF Author: Mark Girolami
Publisher: Springer Science & Business Media
ISBN: 1447104439
Category : Computers
Languages : en
Pages : 286

Get Book Here

Book Description
Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separation, this book reviews the significant developments of the past year. It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain "hard problems" for the very first time. Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods.

Independent Component Analysis

Independent Component Analysis PDF Author: Stephen Roberts
Publisher: Cambridge University Press
ISBN: 9780521792981
Category : Computers
Languages : en
Pages : 358

Get Book Here

Book Description
Independent Component Analysis (ICA) has recently become an important tool for modelling and understanding empirical datasets. It is a method of separating out independent sources from linearly mixed data, and belongs to the class of general linear models. ICA provides a better decomposition than other well-known models such as principal component analysis. This self-contained book contains a structured series of edited papers by leading researchers in the field, including an extensive introduction to ICA. The major theoretical bases are reviewed from a modern perspective, current developments are surveyed and many case studies of applications are described in detail. The latter include biomedical examples, signal and image denoising and mobile communications. ICA is discussed in the framework of general linear models, but also in comparison with other paradigms such as neural network and graphical modelling methods. The book is ideal for researchers and graduate students in the field.

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) PDF Author: Addisson Salazar
Publisher:
ISBN: 9781536139952
Category : Independent component analysis
Languages : en
Pages :

Get Book Here

Book Description
"This book embraces a significant vision of ICA that presents innovative theoretical and practical approaches. This book aims to be an updated and advanced source of knowledge to solve real-world problems efficiently based on ICA.The suitability of ICA for a given problem of data analysis can be posed from different perspectives considering the physical interpretation of the phenomenon under analysis: (i) Estimation of the probability density of multivariate data without physical meaning; (ii) learning of some bases (usually called activation functions), which are more or less connected to the actual behaviors that are implicit in the physical phenomenon; and (iii) to identify where sources are originated and how they mix before arriving to the sensors to provide a physical explanation of the linear mixture model. In any case, even though the complexity of the problem constrains a physical interpretation, ICA can be used as a general-purpose data mining technique. The chapters that compose this book are written by premier researchers that present enlightening discussions, convincing demonstrations, and guidelines for future directions of research. The contents of this book span biomedical signal processing, dynamic modeling, next generation wireless communication, and sound and ultrasound signal processing. It also includes comprehensive works based on the related ICA techniques known as bounded component analysis (BCA) and non-negative matrix factorization"--

Independent Component Analysis

Independent Component Analysis PDF Author: Te-Won Lee
Publisher: Springer
ISBN: 0792382617
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.

Neural information processing [electronic resource]

Neural information processing [electronic resource] PDF Author: Nikil R. Pal
Publisher: Springer Science & Business Media
ISBN: 3540239316
Category : Computers
Languages : en
Pages : 1397

Get Book Here

Book Description
Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.

Face Image Analysis by Unsupervised Learning

Face Image Analysis by Unsupervised Learning PDF Author: Marian Stewart Bartlett
Publisher: Springer Science & Business Media
ISBN: 9780792373483
Category : Computers
Languages : en
Pages : 194

Get Book Here

Book Description
Face Image Analysis by Unsupervised Learning explores adaptive approaches to image analysis. It draws upon principles of unsupervised learning and information theory to adapt processing to the immediate task environment. In contrast to more traditional approaches to image analysis in which relevant structure is determined in advance and extracted using hand-engineered techniques, Face Image Analysis by Unsupervised Learning explores methods that have roots in biological vision and/or learn about the image structure directly from the image ensemble. Particular attention is paid to unsupervised learning techniques for encoding the statistical dependencies in the image ensemble. The first part of this volume reviews unsupervised learning, information theory, independent component analysis, and their relation to biological vision. Next, a face image representation using independent component analysis (ICA) is developed, which is an unsupervised learning technique based on optimal information transfer between neurons. The ICA representation is compared to a number of other face representations including eigenfaces and Gabor wavelets on tasks of identity recognition and expression analysis. Finally, methods for learning features that are robust to changes in viewpoint and lighting are presented. These studies provide evidence that encoding input dependencies through unsupervised learning is an effective strategy for face recognition. Face Image Analysis by Unsupervised Learning is suitable as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.

Independent Component Analysis and Blind Signal Separation

Independent Component Analysis and Blind Signal Separation PDF Author: Carlos G. Puntonet
Publisher: Springer
ISBN: 3540301100
Category : Mathematics
Languages : en
Pages : 1287

Get Book Here

Book Description
In many situations found both in Nature and in human-built systems, a set of mixed signals is observed (frequently also with noise), and it is of great scientific and technological relevance to be able to isolate or separate them so that the information in each of the signals can be utilized. Blind source separation (BSS) research is one of the more interesting emerging fields now a days in the field of signal processing. It deals with the algorithms that allow the recovery of the original sources from a set of mixtures only. The adjective "blind" is applied because the purpose is to estimate the original sources without any a priori knowledge about either the sources or the mixing system. Most of the models employed in BSS assume the hypothesis about the independence of the original sources. Under this hypothesis, a BSS problem can be considered as a particular case of independent component analysis(ICA), a linear transformation technique that, starting from a multivariate representation of the data, minimizes the statistical dependence between the components of the representation. It can be claimed that most of the advances in ICA have been motivated by the search for solutions to the BSS problem and, the other way around, advances in ICA have been immediately applied to BSS. ICA and BSS algorithms start from a mixture model, whose parameters are estimated from the observed mixtures. Separation is achieved by applying the inverse mixture model to the observed signals(separating or unmixing model). Mixturem- els usually fall into three broad categories: instantaneous linear models, convolutive models and nonlinear models, the?rstone being the simplest but, in general, not near realistic applications. The development and test of the algorithms can be accomplished through synthetic data or with real-world data. Obviously, the most important aim(and most difficult) is the separation of real-world mixtures. BSS and ICA have strong relations also, apart from signal processing, with other fields such as statistics and artificial neural networks. As long as we can find a system that emits signals propagated through a mean, andthosesignalsarereceivedbyasetofsensorsandthereisaninterestinrecovering the original sources, we have a potential field of application for BSS and ICA. Inside that wide range of applications we can find, for instance: noise reduction applications, biomedical applications, audio systems, telecommunications, and many others. This volume comes out just 20 years after the first contributions in ICA and BSS 1 appeared . Therein after, the number of research groups working in ICA and BSS has been constantly growing, so that nowadays we can estimate that far more than 100 groups are researching in these fields. As proof of the recognition among the scientific community of ICA and BSS developments there have been numerous special sessions and special issues in several well- 1 J. Herault, B. Ans, "Circuits neuronaux à synapses modi?ables: décodage de messages composites para apprentissage non supervise", C.R. de l'Académie des Sciences, vol. 299, no. III-13,pp.525-528,1984

Independent Component Analysis and Signal Separation

Independent Component Analysis and Signal Separation PDF Author: Mike E. Davies
Publisher: Springer Science & Business Media
ISBN: 3540744932
Category : Computers
Languages : en
Pages : 864

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 7th International Conference on Independent Component Analysis and Blind Source Separation, ICA 2007, held in London, UK, in September 2007. It covers algorithms and architectures, applications, medical applications, speech and signal processing, theory, and visual and sensory processing.