Author: Albrecht Fröhlich
Publisher: American Mathematical Soc.
ISBN: 0821850229
Category : Mathematics
Languages : en
Pages : 96
Book Description
These notes deal with a set of interrelated problems and results in algebraic number theory, in which there has been renewed activity in recent years. The underlying tool is the theory of the central extensions and, in most general terms, the underlying aim is to use class field theoretic methods to reach beyond Abelian extensions. One purpose of this book is to give an introductory survey, assuming the basic theorems of class field theory as mostly recalled in section 1 and giving a central role to the Tate cohomology groups $\hat H{}^{-1}$. The principal aim is, however, to use the general theory as developed here, together with the special features of class field theory over $\mathbf Q$, to derive some rather strong theorems of a very concrete nature, with $\mathbf Q$ as base field. The specialization of the theory of central extensions to the base field $\mathbf Q$ is shown to derive from an underlying principle of wide applicability. The author describes certain non-Abelian Galois groups over the rational field and their inertia subgroups, and uses this description to gain information on ideal class groups of absolutely Abelian fields, all in entirely rational terms. Precise and explicit arithmetic results are obtained, reaching far beyond anything available in the general theory. The theory of the genus field, which is needed as background as well as being of independent interest, is presented in section 2. In section 3, the theory of central extension is developed. The special features over ${\mathbf Q}$ are pointed out throughout. Section 4 deals with Galois groups, and applications to class groups are considered in section 5. Finally, section 6 contains some remarks on the history and literature, but no completeness is attempted.
Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields
Author: Albrecht Fröhlich
Publisher: American Mathematical Soc.
ISBN: 0821850229
Category : Mathematics
Languages : en
Pages : 96
Book Description
These notes deal with a set of interrelated problems and results in algebraic number theory, in which there has been renewed activity in recent years. The underlying tool is the theory of the central extensions and, in most general terms, the underlying aim is to use class field theoretic methods to reach beyond Abelian extensions. One purpose of this book is to give an introductory survey, assuming the basic theorems of class field theory as mostly recalled in section 1 and giving a central role to the Tate cohomology groups $\hat H{}^{-1}$. The principal aim is, however, to use the general theory as developed here, together with the special features of class field theory over $\mathbf Q$, to derive some rather strong theorems of a very concrete nature, with $\mathbf Q$ as base field. The specialization of the theory of central extensions to the base field $\mathbf Q$ is shown to derive from an underlying principle of wide applicability. The author describes certain non-Abelian Galois groups over the rational field and their inertia subgroups, and uses this description to gain information on ideal class groups of absolutely Abelian fields, all in entirely rational terms. Precise and explicit arithmetic results are obtained, reaching far beyond anything available in the general theory. The theory of the genus field, which is needed as background as well as being of independent interest, is presented in section 2. In section 3, the theory of central extension is developed. The special features over ${\mathbf Q}$ are pointed out throughout. Section 4 deals with Galois groups, and applications to class groups are considered in section 5. Finally, section 6 contains some remarks on the history and literature, but no completeness is attempted.
Publisher: American Mathematical Soc.
ISBN: 0821850229
Category : Mathematics
Languages : en
Pages : 96
Book Description
These notes deal with a set of interrelated problems and results in algebraic number theory, in which there has been renewed activity in recent years. The underlying tool is the theory of the central extensions and, in most general terms, the underlying aim is to use class field theoretic methods to reach beyond Abelian extensions. One purpose of this book is to give an introductory survey, assuming the basic theorems of class field theory as mostly recalled in section 1 and giving a central role to the Tate cohomology groups $\hat H{}^{-1}$. The principal aim is, however, to use the general theory as developed here, together with the special features of class field theory over $\mathbf Q$, to derive some rather strong theorems of a very concrete nature, with $\mathbf Q$ as base field. The specialization of the theory of central extensions to the base field $\mathbf Q$ is shown to derive from an underlying principle of wide applicability. The author describes certain non-Abelian Galois groups over the rational field and their inertia subgroups, and uses this description to gain information on ideal class groups of absolutely Abelian fields, all in entirely rational terms. Precise and explicit arithmetic results are obtained, reaching far beyond anything available in the general theory. The theory of the genus field, which is needed as background as well as being of independent interest, is presented in section 2. In section 3, the theory of central extension is developed. The special features over ${\mathbf Q}$ are pointed out throughout. Section 4 deals with Galois groups, and applications to class groups are considered in section 5. Finally, section 6 contains some remarks on the history and literature, but no completeness is attempted.
Class Groups of Number Fields and Related Topics
Author: Kalyan Chakraborty
Publisher: Springer Nature
ISBN: 981151514X
Category : Mathematics
Languages : en
Pages : 182
Book Description
This book gathers original research papers and survey articles presented at the “International Conference on Class Groups of Number Fields and Related Topics,” held at Harish-Chandra Research Institute, Allahabad, India, on September 4–7, 2017. It discusses the fundamental research problems that arise in the study of class groups of number fields and introduces new techniques and tools to study these problems. Topics in this book include class groups and class numbers of number fields, units, the Kummer–Vandiver conjecture, class number one problem, Diophantine equations, Thue equations, continued fractions, Euclidean number fields, heights, rational torsion points on elliptic curves, cyclotomic numbers, Jacobi sums, and Dedekind zeta values. This book is a valuable resource for undergraduate and graduate students of mathematics as well as researchers interested in class groups of number fields and their connections to other branches of mathematics. New researchers to the field will also benefit immensely from the diverse problems discussed. All the contributing authors are leading academicians, scientists, researchers, and scholars.
Publisher: Springer Nature
ISBN: 981151514X
Category : Mathematics
Languages : en
Pages : 182
Book Description
This book gathers original research papers and survey articles presented at the “International Conference on Class Groups of Number Fields and Related Topics,” held at Harish-Chandra Research Institute, Allahabad, India, on September 4–7, 2017. It discusses the fundamental research problems that arise in the study of class groups of number fields and introduces new techniques and tools to study these problems. Topics in this book include class groups and class numbers of number fields, units, the Kummer–Vandiver conjecture, class number one problem, Diophantine equations, Thue equations, continued fractions, Euclidean number fields, heights, rational torsion points on elliptic curves, cyclotomic numbers, Jacobi sums, and Dedekind zeta values. This book is a valuable resource for undergraduate and graduate students of mathematics as well as researchers interested in class groups of number fields and their connections to other branches of mathematics. New researchers to the field will also benefit immensely from the diverse problems discussed. All the contributing authors are leading academicians, scientists, researchers, and scholars.
Number Theory
Author: Helmut Koch
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Quadratic Number Fields
Author: Franz Lemmermeyer
Publisher: Springer Nature
ISBN: 3030786528
Category : Mathematics
Languages : en
Pages : 348
Book Description
This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.
Publisher: Springer Nature
ISBN: 3030786528
Category : Mathematics
Languages : en
Pages : 348
Book Description
This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.
The Theory of Algebraic Number Fields
Author: David Hilbert
Publisher: Springer Science & Business Media
ISBN: 3662035456
Category : Mathematics
Languages : en
Pages : 360
Book Description
A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.
Publisher: Springer Science & Business Media
ISBN: 3662035456
Category : Mathematics
Languages : en
Pages : 360
Book Description
A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.
Introduction to Cyclotomic Fields
Author: Lawrence C. Washington
Publisher: Springer Science & Business Media
ISBN: 1461219345
Category : Mathematics
Languages : en
Pages : 504
Book Description
This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.
Publisher: Springer Science & Business Media
ISBN: 1461219345
Category : Mathematics
Languages : en
Pages : 504
Book Description
This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.
Number Fields
Author: Frans Keune
Publisher: Radboud University Press
ISBN: 9493296032
Category : Mathematics
Languages : en
Pages : 587
Book Description
Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including some Galois theory. Part I of the book contains topics in basic algebraic number theory as they may be presented in a beginning master course on algebraic number theory. It includes the classification of abelian number fields by groups of Dirichlet characters. Class field theory is treated in Part II: the more advanced theory of abelian extensions of number fields in general. Full proofs of its main theorems are given using a ‘classical’ approach to class field theory, which is in a sense a natural continuation of the basic theory as presented in Part I. The classification is formulated in terms of generalized Dirichlet characters. This ‘ideal-theoretic’ version of class field theory dates from the first half of the twentieth century. In this book, it is described in modern mathematical language. Another approach, the ‘idèlic version’, uses topological algebra and group cohomology and originated halfway the last century. The last two chapters provide the connection to this more advanced idèlic version of class field theory. The book focuses on the abstract theory and contains many examples and exercises. For quadratic number fields algorithms are given for their class groups and, in the real case, for the fundamental unit. New concepts are introduced at the moment it makes a real difference to have them available.
Publisher: Radboud University Press
ISBN: 9493296032
Category : Mathematics
Languages : en
Pages : 587
Book Description
Number Fields is a textbook for algebraic number theory. It grew out of lecture notes of master courses taught by the author at Radboud University, the Netherlands, over a period of more than four decades. It is self-contained in the sense that it uses only mathematics of a bachelor level, including some Galois theory. Part I of the book contains topics in basic algebraic number theory as they may be presented in a beginning master course on algebraic number theory. It includes the classification of abelian number fields by groups of Dirichlet characters. Class field theory is treated in Part II: the more advanced theory of abelian extensions of number fields in general. Full proofs of its main theorems are given using a ‘classical’ approach to class field theory, which is in a sense a natural continuation of the basic theory as presented in Part I. The classification is formulated in terms of generalized Dirichlet characters. This ‘ideal-theoretic’ version of class field theory dates from the first half of the twentieth century. In this book, it is described in modern mathematical language. Another approach, the ‘idèlic version’, uses topological algebra and group cohomology and originated halfway the last century. The last two chapters provide the connection to this more advanced idèlic version of class field theory. The book focuses on the abstract theory and contains many examples and exercises. For quadratic number fields algorithms are given for their class groups and, in the real case, for the fundamental unit. New concepts are introduced at the moment it makes a real difference to have them available.
Number Fields
Author: Daniel A. Marcus
Publisher: Springer
ISBN: 3319902334
Category : Mathematics
Languages : en
Pages : 213
Book Description
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Publisher: Springer
ISBN: 3319902334
Category : Mathematics
Languages : en
Pages : 213
Book Description
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Information Security and Privacy
Author: Vijay Varadharajan
Publisher: Springer
ISBN: 3540477195
Category : Computers
Languages : en
Pages : 532
Book Description
This book constitutes the refereed proceedings of the 6th Australasian Conference on Information Security and Privacy, ACISP 2001, held in Sydney, Australia, in July 2001. The 38 revised full papers presented together with three invited contributions were carefully reviewed and selected from a total of 91 submissions. Among the topics addressed are systems security, network security, trust and access cotrol, authentication, cryptography, cryptanalysis, digital signatures, elliptic curve cryptology, and secret sharing and threshold schemes.
Publisher: Springer
ISBN: 3540477195
Category : Computers
Languages : en
Pages : 532
Book Description
This book constitutes the refereed proceedings of the 6th Australasian Conference on Information Security and Privacy, ACISP 2001, held in Sydney, Australia, in July 2001. The 38 revised full papers presented together with three invited contributions were carefully reviewed and selected from a total of 91 submissions. Among the topics addressed are systems security, network security, trust and access cotrol, authentication, cryptography, cryptanalysis, digital signatures, elliptic curve cryptology, and secret sharing and threshold schemes.
ADVANCED ALGEBRA
Author: Dr. Antony P. V.
Publisher: Horizon Books ( A Division of Ignited Minds Edutech P Ltd)
ISBN: 8194682762
Category : Juvenile Nonfiction
Languages : en
Pages : 248
Book Description
Publisher: Horizon Books ( A Division of Ignited Minds Edutech P Ltd)
ISBN: 8194682762
Category : Juvenile Nonfiction
Languages : en
Pages : 248
Book Description