Author: Luis Barreira
Publisher: World Scientific
ISBN: 9811230269
Category : Mathematics
Languages : en
Pages : 241
Book Description
This book provides a comprehensive introduction to the study of hyperbolicity in both linear and nonlinear delay equations. This includes a self-contained discussion of the foundations, main results and essential techniques, with emphasis on important parts of the theory that apply to a large class of delay equations. The central theme is always hyperbolicity and only topics that are directly related to it are included. Among these are robustness, admissibility, invariant manifolds, and spectra, which play important roles in life sciences, engineering and control theory, especially in delayed feedback mechanisms.The book is dedicated to researchers as well as graduate students specializing in differential equations and dynamical systems who wish to have an extensive and in-depth view of the hyperbolicity theory of delay equations. It can also be used as a basis for graduate courses on the stability and hyperbolicity of delay equations.
Hyperbolicity In Delay Equations
Author: Luis Barreira
Publisher: World Scientific
ISBN: 9811230269
Category : Mathematics
Languages : en
Pages : 241
Book Description
This book provides a comprehensive introduction to the study of hyperbolicity in both linear and nonlinear delay equations. This includes a self-contained discussion of the foundations, main results and essential techniques, with emphasis on important parts of the theory that apply to a large class of delay equations. The central theme is always hyperbolicity and only topics that are directly related to it are included. Among these are robustness, admissibility, invariant manifolds, and spectra, which play important roles in life sciences, engineering and control theory, especially in delayed feedback mechanisms.The book is dedicated to researchers as well as graduate students specializing in differential equations and dynamical systems who wish to have an extensive and in-depth view of the hyperbolicity theory of delay equations. It can also be used as a basis for graduate courses on the stability and hyperbolicity of delay equations.
Publisher: World Scientific
ISBN: 9811230269
Category : Mathematics
Languages : en
Pages : 241
Book Description
This book provides a comprehensive introduction to the study of hyperbolicity in both linear and nonlinear delay equations. This includes a self-contained discussion of the foundations, main results and essential techniques, with emphasis on important parts of the theory that apply to a large class of delay equations. The central theme is always hyperbolicity and only topics that are directly related to it are included. Among these are robustness, admissibility, invariant manifolds, and spectra, which play important roles in life sciences, engineering and control theory, especially in delayed feedback mechanisms.The book is dedicated to researchers as well as graduate students specializing in differential equations and dynamical systems who wish to have an extensive and in-depth view of the hyperbolicity theory of delay equations. It can also be used as a basis for graduate courses on the stability and hyperbolicity of delay equations.
Delay Equations
Author: Odo Diekmann
Publisher: Springer Science & Business Media
ISBN: 1461242061
Category : Mathematics
Languages : en
Pages : 547
Book Description
The aim here is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple - yet rich - class of examples, delay differential equations. This textbook contains detailed proofs and many exercises, intended both for self-study and for courses at graduate level, as well as a reference for basic results. As the subtitle indicates, this book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. The book provides the reader with a working knowledge of applied functional analysis and dynamical systems.
Publisher: Springer Science & Business Media
ISBN: 1461242061
Category : Mathematics
Languages : en
Pages : 547
Book Description
The aim here is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple - yet rich - class of examples, delay differential equations. This textbook contains detailed proofs and many exercises, intended both for self-study and for courses at graduate level, as well as a reference for basic results. As the subtitle indicates, this book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. The book provides the reader with a working knowledge of applied functional analysis and dynamical systems.
Semigroups for Delay Equations
Author: Andras Batkai
Publisher: CRC Press
ISBN: 143986568X
Category : Mathematics
Languages : en
Pages : 272
Book Description
In most physical, chemical, biological and economic phenomena it is quite natural to assume that the system not only depends on the present state but also on past occurrences. These circumstances are mathematically described by partial differential equations with delay. This book presents, in a systematic fashion, how delay equations can be studied
Publisher: CRC Press
ISBN: 143986568X
Category : Mathematics
Languages : en
Pages : 272
Book Description
In most physical, chemical, biological and economic phenomena it is quite natural to assume that the system not only depends on the present state but also on past occurrences. These circumstances are mathematically described by partial differential equations with delay. This book presents, in a systematic fashion, how delay equations can be studied
Oscillation Theory for Neutral Differential Equations with Delay
Author: D.D Bainov
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296
Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296
Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Delay Differential Equations and Applications
Author: O. Arino
Publisher: Springer Science & Business Media
ISBN: 9781402036460
Category : Mathematics
Languages : en
Pages : 612
Book Description
This book groups material that was used for the Marrakech 2002 School on Delay Di'erential Equations and Applications. The school was held from September 9-21 2002 at the Semlalia College of Sciences of the Cadi Ayyad University, Marrakech, Morocco. 47 participants and 15 instructors originating from 21 countries attended the school. Fin- cial limitations only allowed support for part of the people from Africa andAsiawhohadexpressedtheirinterestintheschoolandhadhopedto come. Theschoolwassupportedby'nancementsfromNATO-ASI(Nato advanced School), the International Centre of Pure and Applied Mat- matics (CIMPA, Nice, France) and Cadi Ayyad University. The activity of the school consisted in courses, plenary lectures (3) and communi- tions (9), from Monday through Friday, 8. 30 am to 6. 30 pm. Courses were divided into units of 45mn duration, taught by block of two units, with a short 5mn break between two units within a block, and a 25mn break between two blocks. The school was intended for mathematicians willing to acquire some familiarity with delay di'erential equations or enhance their knowledge on this subject. The aim was indeed to extend the basic set of knowledge, including ordinary di'erential equations and semilinearevolutionequations,suchasforexamplethedi'usion-reaction equations arising in morphogenesis or the Belouzov-Zhabotinsky ch- ical reaction, and the classic approach for the resolution of these eq- tions by perturbation, to equations having in addition terms involving past values of the solution.
Publisher: Springer Science & Business Media
ISBN: 9781402036460
Category : Mathematics
Languages : en
Pages : 612
Book Description
This book groups material that was used for the Marrakech 2002 School on Delay Di'erential Equations and Applications. The school was held from September 9-21 2002 at the Semlalia College of Sciences of the Cadi Ayyad University, Marrakech, Morocco. 47 participants and 15 instructors originating from 21 countries attended the school. Fin- cial limitations only allowed support for part of the people from Africa andAsiawhohadexpressedtheirinterestintheschoolandhadhopedto come. Theschoolwassupportedby'nancementsfromNATO-ASI(Nato advanced School), the International Centre of Pure and Applied Mat- matics (CIMPA, Nice, France) and Cadi Ayyad University. The activity of the school consisted in courses, plenary lectures (3) and communi- tions (9), from Monday through Friday, 8. 30 am to 6. 30 pm. Courses were divided into units of 45mn duration, taught by block of two units, with a short 5mn break between two units within a block, and a 25mn break between two blocks. The school was intended for mathematicians willing to acquire some familiarity with delay di'erential equations or enhance their knowledge on this subject. The aim was indeed to extend the basic set of knowledge, including ordinary di'erential equations and semilinearevolutionequations,suchasforexamplethedi'usion-reaction equations arising in morphogenesis or the Belouzov-Zhabotinsky ch- ical reaction, and the classic approach for the resolution of these eq- tions by perturbation, to equations having in addition terms involving past values of the solution.
Boundary Control of PDEs
Author: Miroslav Krstic
Publisher: SIAM
ISBN: 0898718600
Category : Mathematics
Languages : en
Pages : 197
Book Description
The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.
Publisher: SIAM
ISBN: 0898718600
Category : Mathematics
Languages : en
Pages : 197
Book Description
The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.
Numerical Methods for Delay Differential Equations
Author: Alfredo Bellen
Publisher: Numerical Mathematics and Scie
ISBN: 0199671370
Category : Business & Economics
Languages : en
Pages : 411
Book Description
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
Publisher: Numerical Mathematics and Scie
ISBN: 0199671370
Category : Business & Economics
Languages : en
Pages : 411
Book Description
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
Theory, Numerics and Applications of Hyperbolic Problems II
Author: Christian Klingenberg
Publisher: Springer
ISBN: 3319915487
Category : Mathematics
Languages : en
Pages : 698
Book Description
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Publisher: Springer
ISBN: 3319915487
Category : Mathematics
Languages : en
Pages : 698
Book Description
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Hyperbolic Sets, Shadowing and Persistence for Noninvertible Mappings in Banach Spaces
Author: Bernard Lani-Wayda
Publisher: CRC Press
ISBN: 100071683X
Category : Mathematics
Languages : en
Pages : 153
Book Description
This text gives a self-contained and detailed treatment of presently known results, and new theorems on hyperbolicity, shadowing, complicated motion, and robustness. The book is intended to provide a dependable reference for researchers wishing to apply such results. This book will be of particular interest to researchers and students interested in dynamical systems, particularly in noninvertible maps and infinite dimensional semi-flows or maps and global analysis.
Publisher: CRC Press
ISBN: 100071683X
Category : Mathematics
Languages : en
Pages : 153
Book Description
This text gives a self-contained and detailed treatment of presently known results, and new theorems on hyperbolicity, shadowing, complicated motion, and robustness. The book is intended to provide a dependable reference for researchers wishing to apply such results. This book will be of particular interest to researchers and students interested in dynamical systems, particularly in noninvertible maps and infinite dimensional semi-flows or maps and global analysis.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.