Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology

Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology PDF Author: Jens Bölte
Publisher: Cambridge University Press
ISBN: 1107610494
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
Leading experts introduce this classical subject with exciting new applications in theoretical physics.

Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology

Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology PDF Author: Jens Bölte
Publisher: Cambridge University Press
ISBN: 1107610494
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
Leading experts introduce this classical subject with exciting new applications in theoretical physics.

Partial Differential Equations in Fluid Mechanics

Partial Differential Equations in Fluid Mechanics PDF Author: Charles L. Fefferman
Publisher: Cambridge University Press
ISBN: 1108460968
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.

Maurer–Cartan Methods in Deformation Theory

Maurer–Cartan Methods in Deformation Theory PDF Author: Vladimir Dotsenko
Publisher: Cambridge University Press
ISBN: 1108965644
Category : Mathematics
Languages : en
Pages : 187

Get Book Here

Book Description
Covering an exceptional range of topics, this text provides a unique overview of the Maurer-Cartan methods in algebra, geometry, topology, and mathematical physics. It offers a new conceptual treatment of the twisting procedure, guiding the reader through various versions with the help of plentiful motivating examples for graduate students as well as researchers. Topics covered include a novel approach to the twisting procedure for operads leading to Kontsevich graph homology and a description of the twisting procedure for (homotopy) associative algebras or (homotopy) Lie algebras using the biggest deformation gauge group ever considered. The book concludes with concise surveys of recent applications in areas including higher category theory and deformation theory.

Surveys in Combinatorics 2019

Surveys in Combinatorics 2019 PDF Author: Allan Lo
Publisher: Cambridge University Press
ISBN: 1108740723
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
Eight articles provide a valuable survey of the present state of knowledge in combinatorics.

Surveys in Combinatorics 2024

Surveys in Combinatorics 2024 PDF Author: Felix Fischer
Publisher: Cambridge University Press
ISBN: 1009490540
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
This volume contains nine survey articles by the invited speakers of the 30th British Combinatorial Conference, held at Queen Mary University of London in July 2024. Each article provides an overview of recent developments in a current hot research topic in combinatorics. Topics covered include: Latin squares, Erdős covering systems, finite field models, sublinear expanders, cluster expansion, the slice rank polynomial method, and oriented trees and paths in digraphs. The authors are among the world's foremost researchers on their respective topics but their surveys are accessible to nonspecialist readers: they are written clearly with little prior knowledge assumed and with pointers to the wider literature. Taken together these surveys give a snapshot of the research frontier in contemporary combinatorics, helping researchers and graduate students in mathematics and theoretical computer science to keep abreast of the latest developments in the field.

Modular Forms

Modular Forms PDF Author: Henri Cohen
Publisher: American Mathematical Soc.
ISBN: 0821849476
Category : Mathematics
Languages : en
Pages : 714

Get Book Here

Book Description
The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and “fun” subject in itself and abounds with an amazing number of surprising identities. This comprehensive textbook, which includes numerous exercises, aims to give a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas. After a number of motivating examples such as elliptic functions and theta functions, the modular group, its subgroups, and general aspects of holomorphic and nonholomorphic modular forms are explained, with an emphasis on explicit examples. The heart of the book is the classical theory developed by Hecke and continued up to the Atkin–Lehner–Li theory of newforms and including the theory of Eisenstein series, Rankin–Selberg theory, and a more general theory of theta series including the Weil representation. The final chapter explores in some detail more general types of modular forms such as half-integral weight, Hilbert, Jacobi, Maass, and Siegel modular forms. Some “gems” of the book are an immediately implementable trace formula for Hecke operators, generalizations of Haberland's formulas for the computation of Petersson inner products, W. Li's little-known theorem on the diagonalization of the full space of modular forms, and explicit algorithms due to the second author for computing Maass forms. This book is essentially self-contained, the necessary tools such as gamma and Bessel functions, Bernoulli numbers, and so on being given in a separate chapter.

New Directions in Locally Compact Groups

New Directions in Locally Compact Groups PDF Author: Pierre-Emmanuel Caprace
Publisher: Cambridge University Press
ISBN: 1108349544
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.

Modern Trends in Algebra and Representation Theory

Modern Trends in Algebra and Representation Theory PDF Author: David Jordan
Publisher: Cambridge University Press
ISBN: 1009097350
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
Expanding upon the material delivered during the LMS Autumn Algebra School 2020, this volume reflects the fruitful connections between different aspects of representation theory. Each survey article addresses a specific subject from a modern angle, beginning with an exploration of the representation theory of associative algebras, followed by the coverage of important developments in Lie theory in the past two decades, before the final sections introduce the reader to three strikingly different aspects of group theory. Written at a level suitable for graduate students and researchers in related fields, this book provides pure mathematicians with a springboard into the vast and growing literature in each area.

Permutation Groups and Cartesian Decompositions

Permutation Groups and Cartesian Decompositions PDF Author: Cheryl E. Praeger
Publisher: Cambridge University Press
ISBN: 131699905X
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan–Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.

Synthetic Differential Topology

Synthetic Differential Topology PDF Author: Marta Bunge
Publisher: Cambridge University Press
ISBN: 1108692206
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
This book formally introduces synthetic differential topology, a natural extension of the theory of synthetic differential geometry which captures classical concepts of differential geometry and topology by means of the rich categorical structure of a necessarily non-Boolean topos and of the systematic use of logical infinitesimal objects in it. Beginning with an introduction to those parts of topos theory and synthetic differential geometry necessary for the remainder, this clear and comprehensive text covers the general theory of synthetic differential topology and several applications of it to classical mathematics, including the calculus of variations, Mather's theorem, and Morse theory on the classification of singularities. The book represents the state of the art in synthetic differential topology and will be of interest to researchers in topos theory and to mathematicians interested in the categorical foundations of differential geometry and topology.