Hydro-physiographic Characterization and Modeling of the Grand River Watershed for the Estimation of Climate Change Impacts on Ground and Surface Water Resources

Hydro-physiographic Characterization and Modeling of the Grand River Watershed for the Estimation of Climate Change Impacts on Ground and Surface Water Resources PDF Author: Andrew R. Piggott
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description


Addressing Climate Change in Long-term Water Resources Planning and Management

Addressing Climate Change in Long-term Water Resources Planning and Management PDF Author: Levi D. Brekke
Publisher: DIANE Publishing
ISBN: 1437945015
Category : Science
Languages : en
Pages : 160

Get Book Here

Book Description
Describes the water management community¿s needs for climate change info. and tools to support long-term planning. Technical specialists and program managers have worked with their planners, water operators, and environmental compliance managers to identify the information and tools most relevant to their programs. They also have engaged and consulted with other Federal, State, and local agencies and stakeholder groups that have a role in water and water-related resource management to identify complementary priorities and individual perspectives. This report will help focus research and technology efforts to address info. and tools gaps relevant to the water management user community. Charts and tables. This is a print on demand report.

Modelling the Effects of Climate Change on the Surface and Subsurface Hydrology of the Grand River Watershed

Modelling the Effects of Climate Change on the Surface and Subsurface Hydrology of the Grand River Watershed PDF Author: Dennis Colautti
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
A numerical modelling analysis of climate change's precipitation effects on the long-term, averaged surface and subsurface hydrology of the Grand River Watershed (GRW) was undertaken in order to assess possible areas of concern for decision makers in the water management sector. The physically-based, fully-integrated and variably-saturated 3-D surface-subsurface numerical simulator, HydroGeoSphere, was used to drive five mid-21st century climate change scenarios, developed from multiple general circulation models. Calibration involved altering measured and literature-derived hydraulic conductivity and precipitation distribution estimates, resulting in very good matching between observed and simulated long-term average surface flow at all gauge stations. Subsurface head results, too, matched observed heads quite well, though groundwater linkage to neighbouring watersheds was not included. When groundwater linkage to neighbouring watersheds was allowed, via regional Dirichlet boundary conditions used in a parent study, groundwater throughput was deemed to be unrealistic. All but one of the climate change scenarios caused an increase in both river discharge and water table elevation, with the greatest climate perturbations causing the greatest increases. For Scenario 1 (5% less precipitation than the 1960-to-1999 average), percentage discharge changes averaged -15% over all gauge stations. For the other scenarios (more precipitation than average), the inter-scenario discharge response ranged from approximately +12% to +59%. In general the range of inter-subcatchment response was greater than was the range for intra-subcatchment response; the greatest percentage response was consistently in the Speed River subcatchment, while the least was consistently in the Nith and Conestogo subcatchments. The exception was the application of less-than-average precipitation to the Grand River, whose gauge stations reported percentage changes in discharge that varied more substantially from one another. Subsurface hydrology reacted to the climate change scenarios in much the same manner as did the surface hydrology, with all climate change scenarios associated with a precipitation increase unsurprisingly resulting in higher total hydraulic heads throughout the entire domain. Specifically, the minimum and maximum mean head increases among the climate change scenarios were 0.41 m and 1.25 m respectively, while the only decrease was an average of 0.55 m. Similarly, the depth from the ground surface to the water table decreased in most scenarios, the maximum water table rise being 1.08 m and the minimum 0.36 m. When precipitation was allowed to decrease by 5% relative to the long-term average, the average water table elevation decreased by 0.48 m. However the water table's pattern of high and low points remained very much the same among all climate change scenarios, suggesting that basin-wide groundwater flow patterns may not be among the hydrological measures most sensitive to climate change. Groundwater recharge, like almost all other components of the water budget, changed in linear proportion to the climate forcing and in agreement with GRW recharge estimates developed by others. Evapotranspiration, which met potential evapotranspiration in all scenarios due to the constant application of precipitation, was the only element of the water budget that did not increase, even though the water table was elevated closer to the rooting zone by most of the climate scenarios. On a smaller scale, changes in flow patterns may well be expected, given that zones of infiltration were observed to intensify with most of the climate forcing.

Impact of Climate Change on Water Resources

Impact of Climate Change on Water Resources PDF Author: Komaragiri Srinivasa Raju
Publisher: Springer
ISBN: 9811061106
Category : Science
Languages : en
Pages : 275

Get Book Here

Book Description
This book gives an overview of various aspects of climate change by integrating global climate models, downscaling approaches, and hydrological models. It also covers themes that help in understanding climate change in a holistic manner. The book includes worked-out examples, revision questions, exercise problems, and case studies, making it relevant for use as a textbook in graduate courses and professional development programs. The book will serve well researchers, students, as well as professionals working in the area of hydroclimatology.

Regional Hydrological Impacts of Climatic Change: Impact assessment and decision making

Regional Hydrological Impacts of Climatic Change: Impact assessment and decision making PDF Author: Thorsten Wagener
Publisher:
ISBN: 9781901502084
Category : Nature
Languages : en
Pages : 372

Get Book Here

Book Description


A Case Study for Assessing the Hydrologic Impacts of Climate Change at the Watershed Scale

A Case Study for Assessing the Hydrologic Impacts of Climate Change at the Watershed Scale PDF Author: Martinus Hubertus Brouwers
Publisher:
ISBN: 9780494436011
Category :
Languages : en
Pages : 121

Get Book Here

Book Description
Since the advent of the industrial era atmospheric concentrations of greenhouse gases have been on the rise leading to increasing global mean temperatures. Through increasing temperatures and changes to distributions of precipitation, climate change will intensify the hydrologic cycle which will directly impact surface water sources while the impacts to groundwater are reflected through changes in recharge to the water table. The IPCC (2001) reports that limited investigations have been conducted regarding the impacts of climate change to groundwater resources. The complexity of evaluating the hydrologic impacts of climate change requires the use of a numerical model. This thesis investigates the state of the science of conjunctive surface-subsurface water modeling with the aim of determining a suitable approach for conducting long-term transient simulations at the watershed scale. As a result of this investigation, a coupled modeling approach is adopted using HELP3 to simulate surface and vadose zone processes and HydroSphere to simulate saturated flow of groundwater. This approach is applied to the Alder Creek Watershed, which is a subwatershed of the Grand River Watershed and located near Kitchener-Waterloo, Ontario. The Alder Creek Watershed is a suitable case study for the evaluation of climate change scenarios as it has been well characterized from previous studies and it is relatively small in size. Two contrasting scenarios of climate change (i.e., drier and wetter futures) are evaluated relative to a reference scenario that is based on the historical climatic record of the region. The simulation results show a strong impact upon the timing of hydrologic processes, shifting the spring snow melt to earlier in the year leading to an overall decrease in runoff and increase in infiltration for both drier and wetter future climate scenarios. Both climate change scenarios showed a marked increase to overall evapotranspiration which is most pronounced in the summer months. The impacts to groundwater are more subdued relative to surface water. This is attributed to the climate forcing perturbations being attenuated by the shift of the spring snow melt and the transient storage effects of the vadose zone, which can be significant given the hummocky terrain of the region. The simulation results show a small overall rise of groundwater elevations resulting from the simulated increase in infiltration for both climate change scenarios.

Climate Change Impacts on Water Resources

Climate Change Impacts on Water Resources PDF Author: Ramakar Jha
Publisher: Springer Nature
ISBN: 303064202X
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
This book provides insights and a capacity to understand the climate change phenomenon, its impact on water resources, and possible remedial measures. The impact of climate change on water resources is a global issue and cause for concern. Water resources in many countries are extremely stressed, and climate change along with burgeoning populations, the rise in living standards, and increasing demand on resources are factors which serve to exacerbate this stress. The chapters provide information on tools that will be useful to mitigate the adverse consequences of natural disasters. Fundamental to addressing these issues is hydrological modelling which is discussed in this book and ways to combat climate change as an important aspect of water resource management.

Handbook of Climate Change Impacts on River Basin Management

Handbook of Climate Change Impacts on River Basin Management PDF Author: Saeid Eslamian
Publisher: CRC Press
ISBN: 1040020380
Category : Technology & Engineering
Languages : en
Pages : 400

Get Book Here

Book Description
Climate change not only involves rising temperatures but it can also alter the hydro-meteorological parameters of a region and the corresponding changes emerging in the various biotic or abiotic environmental features. One of the results of climate change has been the impact on the sediment yield and its transport. These changes have implications for various other environmental components, particularly soils, water bodies, water quality, land productivity, sedimentation processes, glacier dynamics, and risk management strategies to name a few. This volume provides an overview of the fundamental processes and impacts of climate change on river basin management and examines issues related to soil erosion, sedimentation, and contaminants, as well as rainfall-runoff modeling and flood mitigation strategies. It also includes coverage of climate change fundamentals as well as chapters on related global treaties and policies.

The Handbook of Groundwater Engineering

The Handbook of Groundwater Engineering PDF Author: Jacques W. Delleur
Publisher: CRC Press
ISBN: 1420006002
Category : Technology & Engineering
Languages : en
Pages : 1342

Get Book Here

Book Description
A complete treatment of the theory and practice of groundwater engineering, The Handbook of Groundwater Engineering, Second Edition provides a current and detailed review of how to model the flow of water and the transport of contaminants both in the unsaturated and saturated zones, covers the production of groundwater and the remediation of contaminated groundwater.

The Handbook of Groundwater Engineering, Third Edition

The Handbook of Groundwater Engineering, Third Edition PDF Author: John H. Cushman
Publisher: CRC Press
ISBN: 1315354535
Category : Science
Languages : en
Pages : 1726

Get Book Here

Book Description
This new edition adds several new chapters and is thoroughly updated to include data on new topics such as hydraulic fracturing, CO2 sequestration, sustainable groundwater management, and more. Providing a complete treatment of the theory and practice of groundwater engineering, this new handbook also presents a current and detailed review of how to model the flow of water and the transport of contaminants both in the unsaturated and saturated zones, covers the protection of groundwater, and the remediation of contaminated groundwater.