Hybrid Cultivar Development

Hybrid Cultivar Development PDF Author: S.S. Banga
Publisher: Springer Science & Business Media
ISBN: 9783540635239
Category : Technology & Engineering
Languages : en
Pages : 570

Get Book Here

Book Description
Heterosis breeding based on male sterility has become established in many field crops and has been credited with high productivity. This book presents an update on the advent and promise of hybrids with comprehensive coverage of theoretical and applied aspects of heterosis breeding. Its principal elements are the hybrid advantage, pollination control mechanisms and finally the production of hybrid seeds. Individual crop specialists present in-depth analyses of intricacies involved in the development of hybrids of rice, wheat, maize, barley, pearl millet, sorghum, cotton, sunflower, rapeseed-mustard, castor, pigeonpea, tomato, onion, cole crops, peppers, and melon. The book will be used by researchers, teachers and students of botany, genetics, horticulture and plant breeding.

Hybrid Cultivar Development

Hybrid Cultivar Development PDF Author: S.S. Banga
Publisher: Springer Science & Business Media
ISBN: 9783540635239
Category : Technology & Engineering
Languages : en
Pages : 570

Get Book Here

Book Description
Heterosis breeding based on male sterility has become established in many field crops and has been credited with high productivity. This book presents an update on the advent and promise of hybrids with comprehensive coverage of theoretical and applied aspects of heterosis breeding. Its principal elements are the hybrid advantage, pollination control mechanisms and finally the production of hybrid seeds. Individual crop specialists present in-depth analyses of intricacies involved in the development of hybrids of rice, wheat, maize, barley, pearl millet, sorghum, cotton, sunflower, rapeseed-mustard, castor, pigeonpea, tomato, onion, cole crops, peppers, and melon. The book will be used by researchers, teachers and students of botany, genetics, horticulture and plant breeding.

Plant Breeding and Cultivar Development

Plant Breeding and Cultivar Development PDF Author: D. P. Singh
Publisher: Academic Press
ISBN: 0128175648
Category : Technology & Engineering
Languages : en
Pages : 663

Get Book Here

Book Description
Plant Breeding and Cultivar Development features an optimal balance between classical and modern tools and techniques related to plant breeding. Written for a global audience and based on the extensive international experience of the authors, the book features pertinent examples from major and minor world crops. Advanced data analytics (machine learning), phenomics and artificial intelligence are explored in the book's 28 chapters that cover classical and modern plant breeding. By presenting these advancements in specific detail, private and public sector breeding programs will learn about new, effective and efficient implementation. The insights are clear enough that non-plant breeding majoring students will find it useful to learn about the subject, while advanced level students and researchers and practitioners will find practical examples that help them implement their work. - Bridges the gap between conventional breeding practices and state-of-the-art technologies - Provides real-world case studies of a wide range of plant breeding techniques and practices - Combines insights from genetics, genomics, breeding science, statistics, computer science and engineering for crop improvement and cultivar development

Quantitative Genetics in Maize Breeding

Quantitative Genetics in Maize Breeding PDF Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669

Get Book Here

Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

Breeding Field Crops

Breeding Field Crops PDF Author: John M. Poehlman
Publisher: Springer Science & Business Media
ISBN: 9401572712
Category : Science
Languages : en
Pages : 739

Get Book Here

Book Description
While preparing the first edition of this textbook I attended an extension short course on writing agricultural publications. The message I remember was "select your audience and write to it. " There has never been any doubt about the audience for which this textbook was written, the introductory course in crop breeding. In addition, it has become a widely used reference for the graduate plant-breeding student and the practicing plant breeder. In its prepa ration, particular attention has been given to advances in plant-breeding theo ry and their utility in plant-breeding practice. The blend of the theoretical with the practical has set this book apart from other plant-breeding textbooks. The basic structure and the objectives of the earlier editions remain un changed. These objectives are (1) to review essential features of plant re production, Mendelian genetic principles, and related genetic developments applicable in plant-breeding practice; (2) to describe and evaluate established and new plant-breeding procedures and techniques, and (3) to discuss plant breeding objectives with emphasis on the importance of proper choice of objec tive for achieving success in variety development. Because plant-breeding activities are normally organized around specific crops, there are chapters describing breeding procedures and objectives for the major crop plants; the crops were chosen for their economic importance or diversity in breeding sys tems. These chapters provide a broad overview of the kinds of problems with which the breeder must cope.

Principles of Cultivar Development: Theory and technique

Principles of Cultivar Development: Theory and technique PDF Author: Walter R. Fehr
Publisher:
ISBN:
Category : Field crops
Languages : en
Pages : 560

Get Book Here

Book Description


Principles of Plant Genetics and Breeding

Principles of Plant Genetics and Breeding PDF Author: George Acquaah
Publisher: John Wiley & Sons
ISBN: 1119626323
Category : Science
Languages : en
Pages : 855

Get Book Here

Book Description
The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.

Hybrid Cultivar Development

Hybrid Cultivar Development PDF Author: Surinder S. Banga
Publisher:
ISBN: 9780387635231
Category : Heterosis
Languages : en
Pages : 536

Get Book Here

Book Description
Heterosis breeding based on male sterility has become established in many field crops and has been credited with high productivity. This book presents an update on the advent and promise of hybrids with comprehensive coverage of theoretical and applied aspects of heterosis breeding. Its principal elements are the hybrid advantage, pollination control mechanisms and finally the production of hybrid seeds.Individual crop specialists present in-depth analyses of intricacies involved in the development of hybrids of rice, wheat, maize, barley, pearl millet, sorghum, cotton, sunflower, rapeseed-mustard, castor, pigeonpea, tomato, onion, cole crops, peppers, and melon.The book will be used by researchers, teachers and students of botany, genetics, horticulture and plant breeding.

Hybrid Rice Breeding Manual

Hybrid Rice Breeding Manual PDF Author: S. S. Virmani
Publisher: Int. Rice Res. Inst.
ISBN: 9712201031
Category : Hybrid rice
Languages : en
Pages : 194

Get Book Here

Book Description
Heterosis breeding and hybrid rice; Male sterility systems in rice; Organization of hybrid rice breeding program using CMS system; Source nursery; CMS maintenance and evaluation nursery; Testcross nursery; Restorer purification nursery; Backcross nursery; Combining ability nursery; Breeding rice hybrids with TGMS system; Nucleus and breeder seed production of A, B, R, and TGMS lines; Seed production of experimental rice hybrids; Evaluation of experimental rice hybrids; Improvement of parental lines; Methods of enhancing the levels of heterosis; Quality assurance procedures in hybrid rice breeding.

Heterosis and Hybrid Seed Production in Agronomic Crops

Heterosis and Hybrid Seed Production in Agronomic Crops PDF Author: Amarjit Basra
Publisher: CRC Press
ISBN: 1040291961
Category : Technology & Engineering
Languages : en
Pages : 280

Get Book Here

Book Description
Heterosis and Hybrid Seed Production in Agronomic Crops discusses how heterosis or “hybrid vigor” has played a major role in improving crop productivity and quality in order to feed the ever-increasing human population, particularly in developing countries. Plant breeders, agronomists, seed producers, and farmers will discover why the development of hybrids in the world's major food crops and why the methods of hybrid seed production are critical for achieving this goal. This landmark book deals with heterosis and hybrid seed production of major agronomic crops such as wheat, rice, maize, sorghum, cotton, sunflower, and rapeseed. Through Heterosis and Hybrid Seed Production in Agronomic Crops, you will discover valuable information on hybrid seed production methods that is not available in any other single volume. This unique book contains relevant and essential information about important procedures to help increase crop yield, including: methods for deriving second cycle inbred lines for hybrid maize possibilities for hybrid seed production in wheat techniques of hybrid sorghum seed production production of hybrid seeds using male sterile lines of cotton agronomic management in seed production plots of sunflower seed production technology of hybrid rapeseed advances in hybrid seed production technology of rice in China Heterosis and Hybrid Seed Production in Agronomic Crops gives you a global perspective on essential food crops in all parts of the world. This informative guide will help you use hybrid seed production methods with important agricultural crops and increase the quality of these vital and essential food sources.

Principles and Procedures of Plant Breeding

Principles and Procedures of Plant Breeding PDF Author: G. S. Chahal
Publisher: CRC Press
ISBN: 9780849313219
Category : Crop improvement
Languages : en
Pages : 636

Get Book Here

Book Description
Covering traditional and emerging breeding procedures, this book explores the scientific bases and details of breeding plants. It puts a special emphasis on the further refinements possible in the light of the latest developments in molecular biology. Specific breeding methods in self and cross-pollinated crops, their genetic basis and scope of further refinements, concepts and techniques of tissue culture, molecular biology and production of transgenic plants, commonly used experimental designs in plant breeding, seed production, and implications of plant breeder's rights are other highlights.