Author: Yun Fu
Publisher: Springer
ISBN: 3319270044
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques.
Human Activity Recognition and Prediction
Author: Yun Fu
Publisher: Springer
ISBN: 3319270044
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques.
Publisher: Springer
ISBN: 3319270044
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques.
Deep Learning for Time Series Forecasting
Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 572
Book Description
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 572
Book Description
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Deep Learning for Human Activity Recognition
Author: Xiaoli Li
Publisher: Springer Nature
ISBN: 9811605750
Category : Computers
Languages : en
Pages : 150
Book Description
This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.
Publisher: Springer Nature
ISBN: 9811605750
Category : Computers
Languages : en
Pages : 150
Book Description
This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.
Deep Learning through Sparse and Low-Rank Modeling
Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296
Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Big Data Analytics for Sensor-Network Collected Intelligence
Author: Hui-Huang Hsu
Publisher: Morgan Kaufmann
ISBN: 012809625X
Category : Computers
Languages : en
Pages : 328
Book Description
Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics
Publisher: Morgan Kaufmann
ISBN: 012809625X
Category : Computers
Languages : en
Pages : 328
Book Description
Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics
Human Activity Recognition and Anomaly Detection
Author: Kuan-Chuan Peng
Publisher: Springer Nature
ISBN: 9819790034
Category :
Languages : en
Pages : 156
Book Description
Publisher: Springer Nature
ISBN: 9819790034
Category :
Languages : en
Pages : 156
Book Description
Human Activity Recognition
Author: Miguel A. Labrador
Publisher: CRC Press
ISBN: 1466588284
Category : Computers
Languages : en
Pages : 206
Book Description
Learn How to Design and Implement HAR Systems The pervasiveness and range of capabilities of today's mobile devices have enabled a wide spectrum of mobile applications that are transforming our daily lives, from smartphones equipped with GPS to integrated mobile sensors that acquire physiological data. Human Activity Recognition: Using Wearable Sen
Publisher: CRC Press
ISBN: 1466588284
Category : Computers
Languages : en
Pages : 206
Book Description
Learn How to Design and Implement HAR Systems The pervasiveness and range of capabilities of today's mobile devices have enabled a wide spectrum of mobile applications that are transforming our daily lives, from smartphones equipped with GPS to integrated mobile sensors that acquire physiological data. Human Activity Recognition: Using Wearable Sen
Body Sensor Networks
Author: Guang-Zhong Yang
Publisher: Springer
ISBN: 1447163745
Category : Computers
Languages : en
Pages : 572
Book Description
The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for wellbeing and healthcare. One key development in this area is wireless, wearable and implantable in vivo monitoring and intervention. A myriad of platforms are now available from both academic institutions and commercial organisations. They permit the management of patients with both acute and chronic symptoms, including diabetes, cardiovascular diseases, treatment of epilepsy and other debilitating neurological disorders. Despite extensive developments in sensing technologies, there are significant research issues related to system integration, sensor miniaturisation, low-power sensor interface, wireless telemetry and signal processing. In the 2nd edition of this popular and authoritative reference on Body Sensor Networks (BSN), major topics related to the latest technological developments and potential clinical applications are discussed, with contents covering. Biosensor Design, Interfacing and Nanotechnology Wireless Communication and Network Topologies Communication Protocols and Standards Energy Harvesting and Power Delivery Ultra-low Power Bio-inspired Processing Multi-sensor Fusion and Context Aware Sensing Autonomic Sensing Wearable, Ingestible Sensor Integration and Exemplar Applications System Integration and Wireless Sensor Microsystems The book also provides a comprehensive review of the current wireless sensor development platforms and a step-by-step guide to developing your own BSN applications through the use of the BSN development kit.
Publisher: Springer
ISBN: 1447163745
Category : Computers
Languages : en
Pages : 572
Book Description
The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for wellbeing and healthcare. One key development in this area is wireless, wearable and implantable in vivo monitoring and intervention. A myriad of platforms are now available from both academic institutions and commercial organisations. They permit the management of patients with both acute and chronic symptoms, including diabetes, cardiovascular diseases, treatment of epilepsy and other debilitating neurological disorders. Despite extensive developments in sensing technologies, there are significant research issues related to system integration, sensor miniaturisation, low-power sensor interface, wireless telemetry and signal processing. In the 2nd edition of this popular and authoritative reference on Body Sensor Networks (BSN), major topics related to the latest technological developments and potential clinical applications are discussed, with contents covering. Biosensor Design, Interfacing and Nanotechnology Wireless Communication and Network Topologies Communication Protocols and Standards Energy Harvesting and Power Delivery Ultra-low Power Bio-inspired Processing Multi-sensor Fusion and Context Aware Sensing Autonomic Sensing Wearable, Ingestible Sensor Integration and Exemplar Applications System Integration and Wireless Sensor Microsystems The book also provides a comprehensive review of the current wireless sensor development platforms and a step-by-step guide to developing your own BSN applications through the use of the BSN development kit.
Conference Proceedings of ICDLAIR2019
Author: Meenakshi Tripathi
Publisher: Springer Nature
ISBN: 3030671879
Category : Computers
Languages : en
Pages : 376
Book Description
This proceedings book includes the results from the International Conference on Deep Learning, Artificial Intelligence and Robotics, held in Malaviya National Institute of Technology, Jawahar Lal Nehru Marg, Malaviya Nagar, Jaipur, Rajasthan, 302017. The scope of this conference includes all subareas of AI, with broad coverage of traditional topics like robotics, statistical learning and deep learning techniques. However, the organizing committee expressly encouraged work on the applications of DL and AI in the important fields of computer/electronics/electrical/mechanical/chemical/textile engineering, health care and agriculture, business and social media and other relevant domains. The conference welcomed papers on the following (but not limited to) research topics: · Deep Learning: Applications of deep learning in various engineering streams, neural information processing systems, training schemes, GPU computation and paradigms, human–computer interaction, genetic algorithm, reinforcement learning, natural language processing, social computing, user customization, embedded computation, automotive design and bioinformatics · Artificial Intelligence: Automatic control, natural language processing, data mining and machine learning tools, fuzzy logic, heuristic optimization techniques (membrane-based separation, wastewater treatment, process control, etc.) and soft computing · Robotics: Automation and advanced control-based applications in engineering, neural networks on low powered devices, human–robot interaction and communication, cognitive, developmental and evolutionary robotics, fault diagnosis, virtual reality, space and underwater robotics, simulation and modelling, bio-inspired robotics, cable robots, cognitive robotics, collaborative robotics, collective and social robots and humanoid robots It was a collaborative platform for academic experts, researchers and corporate professionals for interacting their research in various domain of engineering like robotics, data acquisition, human–computer interaction, genetic algorithm, sentiment analysis as well as usage of AI and advanced computation in various industrial challenges based applications such as user customization, augmented reality, voice assistants, reactor design, product formulation/synthesis, embedded system design, membrane-based separation for protecting environment along with wastewater treatment, rheological properties estimation for Newtonian and non-Newtonian fluids used in micro-processing industries and fault detection.
Publisher: Springer Nature
ISBN: 3030671879
Category : Computers
Languages : en
Pages : 376
Book Description
This proceedings book includes the results from the International Conference on Deep Learning, Artificial Intelligence and Robotics, held in Malaviya National Institute of Technology, Jawahar Lal Nehru Marg, Malaviya Nagar, Jaipur, Rajasthan, 302017. The scope of this conference includes all subareas of AI, with broad coverage of traditional topics like robotics, statistical learning and deep learning techniques. However, the organizing committee expressly encouraged work on the applications of DL and AI in the important fields of computer/electronics/electrical/mechanical/chemical/textile engineering, health care and agriculture, business and social media and other relevant domains. The conference welcomed papers on the following (but not limited to) research topics: · Deep Learning: Applications of deep learning in various engineering streams, neural information processing systems, training schemes, GPU computation and paradigms, human–computer interaction, genetic algorithm, reinforcement learning, natural language processing, social computing, user customization, embedded computation, automotive design and bioinformatics · Artificial Intelligence: Automatic control, natural language processing, data mining and machine learning tools, fuzzy logic, heuristic optimization techniques (membrane-based separation, wastewater treatment, process control, etc.) and soft computing · Robotics: Automation and advanced control-based applications in engineering, neural networks on low powered devices, human–robot interaction and communication, cognitive, developmental and evolutionary robotics, fault diagnosis, virtual reality, space and underwater robotics, simulation and modelling, bio-inspired robotics, cable robots, cognitive robotics, collaborative robotics, collective and social robots and humanoid robots It was a collaborative platform for academic experts, researchers and corporate professionals for interacting their research in various domain of engineering like robotics, data acquisition, human–computer interaction, genetic algorithm, sentiment analysis as well as usage of AI and advanced computation in various industrial challenges based applications such as user customization, augmented reality, voice assistants, reactor design, product formulation/synthesis, embedded system design, membrane-based separation for protecting environment along with wastewater treatment, rheological properties estimation for Newtonian and non-Newtonian fluids used in micro-processing industries and fault detection.
IoT Sensor-Based Activity Recognition
Author: Md Atiqur Rahman Ahad
Publisher: Springer
ISBN: 9783030513818
Category : Computers
Languages : en
Pages : 189
Book Description
This book offer clear descriptions of the basic structure for the recognition and classification of human activities using different types of sensor module and smart devices in e.g. healthcare, education, monitoring the elderly, daily human behavior, and fitness monitoring. In addition, the complexities, challenges, and design issues involved in data collection, processing, and other fundamental stages along with datasets, methods, etc., are discussed in detail. The book offers a valuable resource for readers in the fields of pattern recognition, human–computer interaction, and the Internet of Things.
Publisher: Springer
ISBN: 9783030513818
Category : Computers
Languages : en
Pages : 189
Book Description
This book offer clear descriptions of the basic structure for the recognition and classification of human activities using different types of sensor module and smart devices in e.g. healthcare, education, monitoring the elderly, daily human behavior, and fitness monitoring. In addition, the complexities, challenges, and design issues involved in data collection, processing, and other fundamental stages along with datasets, methods, etc., are discussed in detail. The book offers a valuable resource for readers in the fields of pattern recognition, human–computer interaction, and the Internet of Things.