HOUSEHOLD ELECTRIC POWER CONSUMPTION: ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON

HOUSEHOLD ELECTRIC POWER CONSUMPTION: ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 150

Get Book Here

Book Description
In this project, you will perform analysis, clustering, and prediction on household electric power consumption with python. The dataset used in this project contains 2075259 measurements gathered between December 2006 and November 2010 (47 months). Following are the attributes in the dataset: date: Date in format dd/mm/yyyy; time: time in format hh:mm:ss; globalactivepower: household global minute-averaged active power (in kilowatt); globalreactivepower: household global minute-averaged reactive power (in kilowatt); voltage: minute-averaged voltage (in volt); global_intensity: household global minute-averaged current intensity (in ampere); submetering1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered); submetering2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light; and submetering3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds to an electric water-heater and an air-conditioner. In this project, you will perform clustering using KMeans to get 5 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Mastering Time Series Analysis and Forecasting with Python

Mastering Time Series Analysis and Forecasting with Python PDF Author: Sulekha Aloorravi
Publisher: Orange Education Pvt Ltd
ISBN: 8196815107
Category : Computers
Languages : en
Pages : 311

Get Book Here

Book Description
Decode the language of time with Python. Discover powerful techniques to analyze, forecast, and innovate. Key Features ● Dive into time series analysis fundamentals, progressing to advanced Python techniques. ● Gain practical expertise with real-world datasets and hands-on examples. ● Strengthen skills with code snippets, exercises, and projects for deeper understanding. Book Description "Mastering Time Series Analysis and Forecasting with Python" is an essential handbook tailored for those seeking to harness the power of time series data in their work. The book begins with foundational concepts and seamlessly guides readers through Python libraries such as Pandas, NumPy, and Plotly for effective data manipulation, visualization, and exploration. Offering pragmatic insights, it enables adept visualization, pattern recognition, and anomaly detection. Advanced discussions cover feature engineering and a spectrum of forecasting methodologies, including machine learning and deep learning techniques such as ARIMA, LSTM, and CNN. Additionally, the book covers multivariate and multiple time series forecasting, providing readers with a comprehensive understanding of advanced modeling techniques and their applications across diverse domains. Readers develop expertise in crafting precise predictive models and addressing real-world complexities. Complete with illustrative examples, code snippets, and hands-on exercises, this manual empowers readers to excel, make informed decisions, and derive optimal value from time series data. What you will learn ● Understand the fundamentals of time series data, including temporal patterns, trends, and seasonality. ● Proficiently utilize Python libraries such as pandas, NumPy, and matplotlib for efficient data manipulation and visualization. ● Conduct exploratory analysis of time series data, including identifying patterns, detecting anomalies, and extracting meaningful features. ● Build accurate and reliable predictive models using a variety of machine learning and deep learning techniques, including ARIMA, LSTM, and CNN. ● Perform multivariate and multiple time series forecasting, allowing for more comprehensive analysis and prediction across diverse datasets. ● Evaluate model performance using a range of metrics and validation techniques, ensuring the reliability and robustness of predictive models. Table of Contents 1. Introduction to Time Series 2. Overview of Time Series Libraries in Python 3. Visualization of Time Series Data 4. Exploratory Analysis of Time Series Data 5. Feature Engineering on Time Series 6. Time Series Forecasting – ML Approach Part 1 7. Time Series Forecasting – ML Approach Part 2 8. Time Series Forecasting - DL Approach 9. Multivariate Time Series, Metrics, and Validation Index

Computational Science – ICCS 2019

Computational Science – ICCS 2019 PDF Author: João M. F. Rodrigues
Publisher: Springer
ISBN: 3030227502
Category : Computers
Languages : en
Pages : 828

Get Book Here

Book Description
The five-volume set LNCS 11536, 11537, 11538, 11539, and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019. The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems Part IV: Track of Data-Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Marine Computing in the Interconnected World for the Benefit of the Society; Track of Multiscale Modelling and Simulation; Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation Part V: Track of Smart Systems: Computer Vision, Sensor Networks and Machine Learning; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Track ICCS 2019 Chapter “Comparing Domain-decomposition Methods for the Parallelization of Distributed Land Surface Models” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020)

Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020) PDF Author: Aboul-Ella Hassanien
Publisher: Springer Nature
ISBN: 3030442896
Category : Technology & Engineering
Languages : en
Pages : 880

Get Book Here

Book Description
This book presents the proceedings of the 1st International Conference on Artificial Intelligence and Computer Visions (AICV 2020), which took place in Cairo, Egypt, from April 8 to 10, 2020. This international conference, which highlighted essential research and developments in the fields of artificial intelligence and computer visions, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into sections, covering the following topics: swarm-based optimization mining and data analysis, deep learning and applications, machine learning and applications, image processing and computer vision, intelligent systems and applications, and intelligent networks.

Deep Learning for Time Series Forecasting

Deep Learning for Time Series Forecasting PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 572

Get Book Here

Book Description
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.

Short-Term Load Forecasting 2019

Short-Term Load Forecasting 2019 PDF Author: Antonio Gabaldón
Publisher: MDPI
ISBN: 303943442X
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.

Data-driven Analytics for Sustainable Buildings and Cities

Data-driven Analytics for Sustainable Buildings and Cities PDF Author: Xingxing Zhang
Publisher: Springer Nature
ISBN: 9811627789
Category : Social Science
Languages : en
Pages : 450

Get Book Here

Book Description
This book explores the interdisciplinary and transdisciplinary fields of energy systems, occupant behavior, thermal comfort, air quality and economic modelling across levels of building, communities and cities, through various data analytical approaches. It highlights the complex interplay of heating/cooling, ventilation and power systems in different processes, such as design, renovation and operation, for buildings, communities and cities. Methods from classical statistics, machine learning and artificial intelligence are applied into analyses for different building/urban components and systems. Knowledge from this book assists to accelerate sustainability of the society, which would contribute to a prospective improvement through data analysis in the liveability of both built and urban environment. This book targets a broad readership with specific experience and knowledge in data analysis, energy system, built environment and urban planning. As such, it appeals to researchers, graduate students, data scientists, engineers, consultants, urban scientists, investors and policymakers, with interests in energy flexibility, building/city resilience and climate neutrality.

Forecasting and Assessing Risk of Individual Electricity Peaks

Forecasting and Assessing Risk of Individual Electricity Peaks PDF Author: Maria Jacob
Publisher: Springer Nature
ISBN: 303028669X
Category : Mathematics
Languages : en
Pages : 108

Get Book Here

Book Description
The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general.

Control and Measurement Applications for Smart Grid

Control and Measurement Applications for Smart Grid PDF Author: Sathans Suhag
Publisher: Springer Nature
ISBN: 981167664X
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
The book contains select proceedings of the International Conference on Smart Grid Energy Systems and Control (SGESC 2021). The proceedings is divided into 03 volumes, and this volume focuses on adaptive control and intelligent sensors, wide-area measurements, and applications in the smart grid. This book includes papers on topics such as SMART sensors, vision sensors, sensor fusion, wireless sensors, and the internet of things, MEMS, Mechatronics, Remote sensing, telemetry, and its applications in automated vehicle control. This book is a unique collection of chapters from different areas with a common theme and will be immensely useful to academic researchers and practitioners in the industry.

Polygeneration Systems

Polygeneration Systems PDF Author: Francesco Calise
Publisher: Academic Press
ISBN: 0128206268
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. - Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies - Offers a comprehensive list of all current numerical and experimental results of polygeneration available - Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results