Author: D.A. Timashev
Publisher: Springer Science & Business Media
ISBN: 3642183999
Category : Mathematics
Languages : en
Pages : 267
Book Description
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
Homogeneous Spaces and Equivariant Embeddings
Author: D.A. Timashev
Publisher: Springer Science & Business Media
ISBN: 3642183999
Category : Mathematics
Languages : en
Pages : 267
Book Description
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
Publisher: Springer Science & Business Media
ISBN: 3642183999
Category : Mathematics
Languages : en
Pages : 267
Book Description
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
Surveys in Geometry and Number Theory
Author: Nicholas Young
Publisher: Cambridge University Press
ISBN: 0521691826
Category : Mathematics
Languages : en
Pages : 327
Book Description
A collection of survey articles by leading young researchers, showcasing the vitality of Russian mathematics.
Publisher: Cambridge University Press
ISBN: 0521691826
Category : Mathematics
Languages : en
Pages : 327
Book Description
A collection of survey articles by leading young researchers, showcasing the vitality of Russian mathematics.
Algebraic Homogeneous Spaces and Invariant Theory
Author: Frank D. Grosshans
Publisher: Springer
ISBN: 3540696172
Category : Mathematics
Languages : en
Pages : 158
Book Description
The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.
Publisher: Springer
ISBN: 3540696172
Category : Mathematics
Languages : en
Pages : 158
Book Description
The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.
Submanifolds and Holonomy
Author: Jurgen Berndt
Publisher: CRC Press
ISBN: 1482245167
Category : Mathematics
Languages : en
Pages : 494
Book Description
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom
Publisher: CRC Press
ISBN: 1482245167
Category : Mathematics
Languages : en
Pages : 494
Book Description
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom
Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis
Author: Victor Patrangenaru
Publisher: CRC Press
ISBN: 1439820511
Category : Mathematics
Languages : en
Pages : 534
Book Description
A New Way of Analyzing Object Data from a Nonparametric ViewpointNonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields
Publisher: CRC Press
ISBN: 1439820511
Category : Mathematics
Languages : en
Pages : 534
Book Description
A New Way of Analyzing Object Data from a Nonparametric ViewpointNonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields
Birational Geometry, Kähler–Einstein Metrics and Degenerations
Author: Ivan Cheltsov
Publisher: Springer Nature
ISBN: 3031178599
Category : Mathematics
Languages : en
Pages : 882
Book Description
This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: • existence of Kähler–Einstein metrics on Fano varieties • degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov–Alexeev–Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian–Yau–Donaldson Conjecture on the existence of Kähler–Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kähler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow–Shanghai–Pohang conferences, while the others helped to expand the research breadth of the volume—the diversity of their contributions reflects the vitality of modern Algebraic Geometry.
Publisher: Springer Nature
ISBN: 3031178599
Category : Mathematics
Languages : en
Pages : 882
Book Description
This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: • existence of Kähler–Einstein metrics on Fano varieties • degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov–Alexeev–Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian–Yau–Donaldson Conjecture on the existence of Kähler–Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kähler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow–Shanghai–Pohang conferences, while the others helped to expand the research breadth of the volume—the diversity of their contributions reflects the vitality of modern Algebraic Geometry.
Topological Methods in Algebraic Transformation Groups
Author: Kraft
Publisher: Springer Science & Business Media
ISBN: 1461237025
Category : Mathematics
Languages : en
Pages : 216
Book Description
In recent years, there has been increasing interest and activity in the area of group actions on affine and projective algebraic varieties. Tech niques from various branches of mathematics have been important for this study, especially those coming from the well-developed theory of smooth compact transformation groups. It was timely to have an interdisciplinary meeting on these topics. We organized the conference "Topological Methods in Alg~braic Transformation Groups," which was held at Rutgers University, 4-8 April, 1988. Our aim was to facilitate an exchange of ideas and techniques among mathematicians studying compact smooth transformation groups, alge braic transformation groups and related issues in algebraic and analytic geometry. The meeting was well attended, and these Proceedings offer a larger audience the opportunity to benefit from the excellent survey and specialized talks presented. The main topics concerned various as pects of group actions, algebraic quotients, homogeneous spaces and their compactifications. The meeting was made possible by support from Rutgers University and the National Science Foundation. We express our deep appreciation for this support. We also thank Annette Neuen for her assistance with the technical preparation of these Proceedings.
Publisher: Springer Science & Business Media
ISBN: 1461237025
Category : Mathematics
Languages : en
Pages : 216
Book Description
In recent years, there has been increasing interest and activity in the area of group actions on affine and projective algebraic varieties. Tech niques from various branches of mathematics have been important for this study, especially those coming from the well-developed theory of smooth compact transformation groups. It was timely to have an interdisciplinary meeting on these topics. We organized the conference "Topological Methods in Alg~braic Transformation Groups," which was held at Rutgers University, 4-8 April, 1988. Our aim was to facilitate an exchange of ideas and techniques among mathematicians studying compact smooth transformation groups, alge braic transformation groups and related issues in algebraic and analytic geometry. The meeting was well attended, and these Proceedings offer a larger audience the opportunity to benefit from the excellent survey and specialized talks presented. The main topics concerned various as pects of group actions, algebraic quotients, homogeneous spaces and their compactifications. The meeting was made possible by support from Rutgers University and the National Science Foundation. We express our deep appreciation for this support. We also thank Annette Neuen for her assistance with the technical preparation of these Proceedings.
The Analytical and Topological Theory of Semigroups
Author: Karl H. Hofmann
Publisher: Walter de Gruyter
ISBN: 3110856042
Category : Mathematics
Languages : en
Pages : 413
Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Publisher: Walter de Gruyter
ISBN: 3110856042
Category : Mathematics
Languages : en
Pages : 413
Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Group Actions and Invariant Theory
Author: Andrzej Białynicki-Birula
Publisher: American Mathematical Soc.
ISBN: 9780821860151
Category : Mathematics
Languages : en
Pages : 244
Book Description
This volume contains the proceedings of a conference, sponsored by the Canadian Mathematical Society, on Group Actions and Invariant Theory, held in August, 1988 in Montreal. The conference was the third in a series bringing together researchers from North America and Europe (particularly Poland). The papers collected here will provide an overview of the state of the art of research in this area. The conference was primarily concerned with the geometric side of invariant theory, including explorations of the linearization problem for reductive group actions on affine spaces (with a counterexample given recently by J. Schwarz), spherical and complete symmetric varieties, reductive quotients, automorphisms of affine varieties, and homogeneous vector bundles.
Publisher: American Mathematical Soc.
ISBN: 9780821860151
Category : Mathematics
Languages : en
Pages : 244
Book Description
This volume contains the proceedings of a conference, sponsored by the Canadian Mathematical Society, on Group Actions and Invariant Theory, held in August, 1988 in Montreal. The conference was the third in a series bringing together researchers from North America and Europe (particularly Poland). The papers collected here will provide an overview of the state of the art of research in this area. The conference was primarily concerned with the geometric side of invariant theory, including explorations of the linearization problem for reductive group actions on affine spaces (with a counterexample given recently by J. Schwarz), spherical and complete symmetric varieties, reductive quotients, automorphisms of affine varieties, and homogeneous vector bundles.
Frobenius Splitting Methods in Geometry and Representation Theory
Author: Michel Brion
Publisher: Springer Science & Business Media
ISBN: 0817644059
Category : Mathematics
Languages : en
Pages : 259
Book Description
Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.
Publisher: Springer Science & Business Media
ISBN: 0817644059
Category : Mathematics
Languages : en
Pages : 259
Book Description
Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.