Author: Sheldon Jay Axler
Publisher: Cambridge University Press
ISBN: 9780521631938
Category : Mathematics
Languages : en
Pages : 490
Book Description
Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.
Holomorphic Spaces
Author: Sheldon Jay Axler
Publisher: Cambridge University Press
ISBN: 9780521631938
Category : Mathematics
Languages : en
Pages : 490
Book Description
Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.
Publisher: Cambridge University Press
ISBN: 9780521631938
Category : Mathematics
Languages : en
Pages : 490
Book Description
Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.
Spaces of Holomorphic Functions in the Unit Ball
Author: Kehe Zhu
Publisher: Springer Science & Business Media
ISBN: 0387220364
Category : Mathematics
Languages : en
Pages : 281
Book Description
Can be used as a graduate text Contains many exercises Contains new results
Publisher: Springer Science & Business Media
ISBN: 0387220364
Category : Mathematics
Languages : en
Pages : 281
Book Description
Can be used as a graduate text Contains many exercises Contains new results
Holomorphic Functions in the Plane and n-dimensional Space
Author: Klaus Gürlebeck
Publisher: Springer Science & Business Media
ISBN: 3764382716
Category : Mathematics
Languages : en
Pages : 407
Book Description
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter.
Publisher: Springer Science & Business Media
ISBN: 3764382716
Category : Mathematics
Languages : en
Pages : 407
Book Description
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter.
Holomorphic Automorphism Groups in Banach Spaces
Author: J.M. Isidro
Publisher: Elsevier
ISBN: 0080872166
Category : Mathematics
Languages : en
Pages : 305
Book Description
Holomorphic Automorphism Groups in Banach Spaces
Publisher: Elsevier
ISBN: 0080872166
Category : Mathematics
Languages : en
Pages : 305
Book Description
Holomorphic Automorphism Groups in Banach Spaces
Hyperbolic Complex Spaces
Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3662035820
Category : Mathematics
Languages : en
Pages : 480
Book Description
In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.
Publisher: Springer Science & Business Media
ISBN: 3662035820
Category : Mathematics
Languages : en
Pages : 480
Book Description
In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.
Holomorphic Sobolev Spaces on the Ball
Author: Frank Beatrous
Publisher:
ISBN:
Category : Holomorphic functions
Languages : en
Pages : 68
Book Description
Publisher:
ISBN:
Category : Holomorphic functions
Languages : en
Pages : 68
Book Description
Dirichlet Series and Holomorphic Functions in High Dimensions
Author: Andreas Defant
Publisher: Cambridge University Press
ISBN: 1108476716
Category : Mathematics
Languages : en
Pages : 709
Book Description
Using contemporary concepts, this book describes the interaction between Dirichlet series and holomorphic functions in high dimensions.
Publisher: Cambridge University Press
ISBN: 1108476716
Category : Mathematics
Languages : en
Pages : 709
Book Description
Using contemporary concepts, this book describes the interaction between Dirichlet series and holomorphic functions in high dimensions.
The Dirichlet Space and Related Function Spaces
Author: Nicola Arcozzi
Publisher: American Mathematical Soc.
ISBN: 1470450828
Category : Mathematics
Languages : en
Pages : 559
Book Description
The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem. The first part of this book is an introduction to the function theory and operator theory of the classical Dirichlet space, a space of holomorphic functions on the unit disk defined by a smoothness criterion. The Dirichlet space is also a Hilbert space with a reproducing kernel, and is the model for the dyadic Dirichlet space, a sequence space defined on the dyadic tree. These various viewpoints are used to study a range of topics including the Pick property, multipliers, Carleson measures, boundary values, zero sets, interpolating sequences, the local Dirichlet integral, shift invariant subspaces, and Hankel forms. Recurring themes include analogies, sometimes weak and sometimes strong, with the classical Hardy space; and the analogy with the dyadic Dirichlet space. The final chapters of the book focus on Besov spaces of holomorphic functions on the complex unit ball, a class of Banach spaces generalizing the Dirichlet space. Additional techniques are developed to work with the nonisotropic complex geometry, including a useful invariant definition of local oscillation and a sophisticated variation on the dyadic Dirichlet space. Descriptions are obtained of multipliers, Carleson measures, interpolating sequences, and multiplier interpolating sequences; estimates are obtained to prove corona theorems.
Publisher: American Mathematical Soc.
ISBN: 1470450828
Category : Mathematics
Languages : en
Pages : 559
Book Description
The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem. The first part of this book is an introduction to the function theory and operator theory of the classical Dirichlet space, a space of holomorphic functions on the unit disk defined by a smoothness criterion. The Dirichlet space is also a Hilbert space with a reproducing kernel, and is the model for the dyadic Dirichlet space, a sequence space defined on the dyadic tree. These various viewpoints are used to study a range of topics including the Pick property, multipliers, Carleson measures, boundary values, zero sets, interpolating sequences, the local Dirichlet integral, shift invariant subspaces, and Hankel forms. Recurring themes include analogies, sometimes weak and sometimes strong, with the classical Hardy space; and the analogy with the dyadic Dirichlet space. The final chapters of the book focus on Besov spaces of holomorphic functions on the complex unit ball, a class of Banach spaces generalizing the Dirichlet space. Additional techniques are developed to work with the nonisotropic complex geometry, including a useful invariant definition of local oscillation and a sophisticated variation on the dyadic Dirichlet space. Descriptions are obtained of multipliers, Carleson measures, interpolating sequences, and multiplier interpolating sequences; estimates are obtained to prove corona theorems.
Stein Manifolds and Holomorphic Mappings
Author: Franc Forstnerič
Publisher: Springer
ISBN: 3319610589
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.
Publisher: Springer
ISBN: 3319610589
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.
Geometry and Dynamics of Groups and Spaces
Author: Mikhail Kapranov
Publisher: Springer Science & Business Media
ISBN: 3764386088
Category : Mathematics
Languages : en
Pages : 759
Book Description
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.
Publisher: Springer Science & Business Media
ISBN: 3764386088
Category : Mathematics
Languages : en
Pages : 759
Book Description
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.