Author: Katsunori Iwasaki
Publisher: Springer Science & Business Media
ISBN: 3322901637
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
This book gives an introduction to the modern theory of special functions. It focuses on the nonlinear Painlevé differential equation and its solutions, the so-called Painlevé functions. It contains modern treatments of the Gauss hypergeometric differential equation, monodromy of second order Fuchsian equations and nonlinear differential equations near singular points.The book starts from an elementary level requiring only basic notions of differential equations, function theory and group theory. Graduate students should be able to work with the text."The authors do an excellent job of presenting both the historical and mathematical details of the subject in a form accessible to any mathematician or physicist." (MPR in "The American Mathematical Monthly" März 1992.
Holomorphic Functions and Moduli I
Author: D. Drasin
Publisher: Springer Science & Business Media
ISBN: 1461396026
Category : Mathematics
Languages : en
Pages : 249
Book Description
The Spring 1986 Program in Geometric Function Theory (GFT) at the Mathematical Sciences Research Institute (MSRI) brought together mathe maticians interested in Teichmiiller theory, quasiconformal mappings, Kleinian groups, univalent functions and value distribution. It included a large and stimulating Workshop, preceded by a mini-conference on String Theory attended by both mathematicians and physicists. These activities produced interesting results and fruitful interactions among the partici pants. These volumes represent only a portion of the papers that will even tually result from ideas developed in the offices and corridors of MSRI's elegant home. The Editors solicited contributions from all participants in the Program whether or not they gave a talk at the Workshop. Papers were also submit ted by mathematicians invited but unable to attend. All manuscripts were refereed. The articles included here cover a broad spectrum, representative of the activities during the semester. We have made an attempt to group them by subject, for the reader's convenience. The Editors take pleasure in thanking all participants, authors and ref erees for their work in producing these volumes. We are also grateful to the Scientific Advisory Council of MSRI for sup porting the Program in GFT. Finally thanks are due to the National Sci ence Foundation and those Universities (including Cornell, Michigan, Min nesota, Rutgers Newark, SUNY Stony Brook) who gave released time to faculty members to participate for extended periods in this program.
Publisher: Springer Science & Business Media
ISBN: 1461396026
Category : Mathematics
Languages : en
Pages : 249
Book Description
The Spring 1986 Program in Geometric Function Theory (GFT) at the Mathematical Sciences Research Institute (MSRI) brought together mathe maticians interested in Teichmiiller theory, quasiconformal mappings, Kleinian groups, univalent functions and value distribution. It included a large and stimulating Workshop, preceded by a mini-conference on String Theory attended by both mathematicians and physicists. These activities produced interesting results and fruitful interactions among the partici pants. These volumes represent only a portion of the papers that will even tually result from ideas developed in the offices and corridors of MSRI's elegant home. The Editors solicited contributions from all participants in the Program whether or not they gave a talk at the Workshop. Papers were also submit ted by mathematicians invited but unable to attend. All manuscripts were refereed. The articles included here cover a broad spectrum, representative of the activities during the semester. We have made an attempt to group them by subject, for the reader's convenience. The Editors take pleasure in thanking all participants, authors and ref erees for their work in producing these volumes. We are also grateful to the Scientific Advisory Council of MSRI for sup porting the Program in GFT. Finally thanks are due to the National Sci ence Foundation and those Universities (including Cornell, Michigan, Min nesota, Rutgers Newark, SUNY Stony Brook) who gave released time to faculty members to participate for extended periods in this program.
From Gauss to Painlevé
Author: Katsunori Iwasaki
Publisher: Springer Science & Business Media
ISBN: 3322901637
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
This book gives an introduction to the modern theory of special functions. It focuses on the nonlinear Painlevé differential equation and its solutions, the so-called Painlevé functions. It contains modern treatments of the Gauss hypergeometric differential equation, monodromy of second order Fuchsian equations and nonlinear differential equations near singular points.The book starts from an elementary level requiring only basic notions of differential equations, function theory and group theory. Graduate students should be able to work with the text."The authors do an excellent job of presenting both the historical and mathematical details of the subject in a form accessible to any mathematician or physicist." (MPR in "The American Mathematical Monthly" März 1992.
Publisher: Springer Science & Business Media
ISBN: 3322901637
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
This book gives an introduction to the modern theory of special functions. It focuses on the nonlinear Painlevé differential equation and its solutions, the so-called Painlevé functions. It contains modern treatments of the Gauss hypergeometric differential equation, monodromy of second order Fuchsian equations and nonlinear differential equations near singular points.The book starts from an elementary level requiring only basic notions of differential equations, function theory and group theory. Graduate students should be able to work with the text."The authors do an excellent job of presenting both the historical and mathematical details of the subject in a form accessible to any mathematician or physicist." (MPR in "The American Mathematical Monthly" März 1992.
Mirror Symmetry I
Author: Shing-Tung Yau
Publisher: American Mathematical Soc.
ISBN: 082182743X
Category : Mathematics
Languages : en
Pages : 460
Book Description
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Publisher: American Mathematical Soc.
ISBN: 082182743X
Category : Mathematics
Languages : en
Pages : 460
Book Description
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Handbook of Teichmüller Theory
Author: Athanase Papadopoulos
Publisher: European Mathematical Society
ISBN: 9783037191033
Category : Mathematics
Languages : en
Pages : 876
Book Description
The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics, and others. This confluence of ideas toward a unique subject is a manifestation of the unity and harmony of mathematics. This volume contains surveys on the fundamental theory as well as surveys on applications to and relations with the fields mentioned above. It is written by leading experts in these fields. Some of the surveys contain classical material, while others present the latest developments of the theory as well as open problems. This volume is divided into the following four sections: The metric and the analytic theory The group theory The algebraic topology of mapping class groups and moduli spaces Teichmuller theory and mathematical physics This handbook is addressed to graduate students and researchers in all the fields mentioned.
Publisher: European Mathematical Society
ISBN: 9783037191033
Category : Mathematics
Languages : en
Pages : 876
Book Description
The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics, and others. This confluence of ideas toward a unique subject is a manifestation of the unity and harmony of mathematics. This volume contains surveys on the fundamental theory as well as surveys on applications to and relations with the fields mentioned above. It is written by leading experts in these fields. Some of the surveys contain classical material, while others present the latest developments of the theory as well as open problems. This volume is divided into the following four sections: The metric and the analytic theory The group theory The algebraic topology of mapping class groups and moduli spaces Teichmuller theory and mathematical physics This handbook is addressed to graduate students and researchers in all the fields mentioned.
Homotopy Equivalences of 3-Manifolds and Deformation Theory of Kleinian Groups
Author: Richard Douglas Canary
Publisher: American Mathematical Soc.
ISBN: 0821835491
Category : Mathematics
Languages : en
Pages : 238
Book Description
Three volume narrative history of 20th century.
Publisher: American Mathematical Soc.
ISBN: 0821835491
Category : Mathematics
Languages : en
Pages : 238
Book Description
Three volume narrative history of 20th century.
Proceedings on Moonshine and Related Topics
Author: John McKay
Publisher: American Mathematical Soc.
ISBN: 0821828797
Category : Mathematics
Languages : en
Pages : 280
Book Description
This volume contains the proceedings of the Moonshine workshop held at the Centre de Recherches Mathematiques (CRM) in Montreal. In this volume, all the classical Moonshine themes are presented, namely the Monster simple group and other finite groups, automorphic functions and forms and related congruence groups, and vertex algebras and their representations. These topics appear in either a pure form or in a blend of algebraic geometry dealing with algebraic surfaces, Picard-Fuchsequations, and hypergeometric functions.
Publisher: American Mathematical Soc.
ISBN: 0821828797
Category : Mathematics
Languages : en
Pages : 280
Book Description
This volume contains the proceedings of the Moonshine workshop held at the Centre de Recherches Mathematiques (CRM) in Montreal. In this volume, all the classical Moonshine themes are presented, namely the Monster simple group and other finite groups, automorphic functions and forms and related congruence groups, and vertex algebras and their representations. These topics appear in either a pure form or in a blend of algebraic geometry dealing with algebraic surfaces, Picard-Fuchsequations, and hypergeometric functions.
The Geometry of Hamiltonian Systems
Author: Tudor Ratiu
Publisher: Springer Science & Business Media
ISBN: 1461397251
Category : Mathematics
Languages : en
Pages : 526
Book Description
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.
Publisher: Springer Science & Business Media
ISBN: 1461397251
Category : Mathematics
Languages : en
Pages : 526
Book Description
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.
Quasiconformal Space Mappings
Author: Matti Vuorinen
Publisher: Springer
ISBN: 3540470611
Category : Mathematics
Languages : en
Pages : 156
Book Description
This volume is a collection of surveys on function theory in euclidean n-dimensional spaces centered around the theme of quasiconformal space mappings. These surveys cover or are related to several topics including inequalities for conformal invariants and extremal length, distortion theorems, L(p)-theory of quasiconformal maps, nonlinear potential theory, variational calculus, value distribution theory of quasiregular maps, topological properties of discrete open mappings, the action of quasiconformal maps in special classes of domains, and global injectivity theorems. The present volume is the first collection of surveys on Quasiconformal Space Mappings since the origin of the theory in 1960 and this collection provides in compact form access to a wide spectrum of recent results due to well-known specialists. CONTENTS: G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen: Conformal invariants, quasiconformal maps and special functions.- F.W. Gehring: Topics in quasiconformal mappings.- T.Iwaniec: L(p)-theory of quasiregular mappings.- O. Martio: Partial differential equations and quasiregular mappings.- Yu.G. Reshetnyak: On functional classes invariant relative to homothetics.- S. Rickman: Picard's theorem and defect relation for quasiconformal mappings.- U. Srebro: Topological properties of quasiregular mappings.- J. V{is{l{: Domains and maps.- V.A. Zorich: The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems.
Publisher: Springer
ISBN: 3540470611
Category : Mathematics
Languages : en
Pages : 156
Book Description
This volume is a collection of surveys on function theory in euclidean n-dimensional spaces centered around the theme of quasiconformal space mappings. These surveys cover or are related to several topics including inequalities for conformal invariants and extremal length, distortion theorems, L(p)-theory of quasiconformal maps, nonlinear potential theory, variational calculus, value distribution theory of quasiregular maps, topological properties of discrete open mappings, the action of quasiconformal maps in special classes of domains, and global injectivity theorems. The present volume is the first collection of surveys on Quasiconformal Space Mappings since the origin of the theory in 1960 and this collection provides in compact form access to a wide spectrum of recent results due to well-known specialists. CONTENTS: G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen: Conformal invariants, quasiconformal maps and special functions.- F.W. Gehring: Topics in quasiconformal mappings.- T.Iwaniec: L(p)-theory of quasiregular mappings.- O. Martio: Partial differential equations and quasiregular mappings.- Yu.G. Reshetnyak: On functional classes invariant relative to homothetics.- S. Rickman: Picard's theorem and defect relation for quasiconformal mappings.- U. Srebro: Topological properties of quasiregular mappings.- J. V{is{l{: Domains and maps.- V.A. Zorich: The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems.
Algebraic and Topological Dynamics
Author: S. F. Koli︠a︡da
Publisher: American Mathematical Soc.
ISBN: 0821837516
Category : Mathematics
Languages : en
Pages : 378
Book Description
This volume contains a collection of articles from the special program on algebraic and topological dynamics and a workshop on dynamical systems held at the Max-Planck Institute (Bonn, Germany). It reflects the extraordinary vitality of dynamical systems in its interaction with a broad range of mathematical subjects. Topics covered in the book include asymptotic geometric analysis, transformation groups, arithmetic dynamics, complex dynamics, symbolic dynamics, statisticalproperties of dynamical systems, and the theory of entropy and chaos. The book is suitable for graduate students and researchers interested in dynamical systems.
Publisher: American Mathematical Soc.
ISBN: 0821837516
Category : Mathematics
Languages : en
Pages : 378
Book Description
This volume contains a collection of articles from the special program on algebraic and topological dynamics and a workshop on dynamical systems held at the Max-Planck Institute (Bonn, Germany). It reflects the extraordinary vitality of dynamical systems in its interaction with a broad range of mathematical subjects. Topics covered in the book include asymptotic geometric analysis, transformation groups, arithmetic dynamics, complex dynamics, symbolic dynamics, statisticalproperties of dynamical systems, and the theory of entropy and chaos. The book is suitable for graduate students and researchers interested in dynamical systems.
Recent Advances in Operator-Related Function Theory
Author: Alec L. Matheson
Publisher: American Mathematical Soc.
ISBN: 082183925X
Category : Mathematics
Languages : en
Pages : 230
Book Description
The articles in this book are based on talks at a conference devoted to interrelations between function theory and the theory of operators. The main theme of the book is the role of Alexandrov-Clark measures. Two of the articles provide the introduction to the theory of Alexandrov-Clark measures and to its applications in the spectral theory of linear operators. The remaining articles deal with recent results in specific directions related to the theme of the book.
Publisher: American Mathematical Soc.
ISBN: 082183925X
Category : Mathematics
Languages : en
Pages : 230
Book Description
The articles in this book are based on talks at a conference devoted to interrelations between function theory and the theory of operators. The main theme of the book is the role of Alexandrov-Clark measures. Two of the articles provide the introduction to the theory of Alexandrov-Clark measures and to its applications in the spectral theory of linear operators. The remaining articles deal with recent results in specific directions related to the theme of the book.