High Temperature Constitutive Modeling--theory and Application

High Temperature Constitutive Modeling--theory and Application PDF Author: American Society of Mechanical Engineers. Winter Annual Meeting
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 488

Get Book Here

Book Description

High Temperature Constitutive Modeling--theory and Application

High Temperature Constitutive Modeling--theory and Application PDF Author: American Society of Mechanical Engineers. Winter Annual Meeting
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 488

Get Book Here

Book Description


High Temperature Constitutive Modeling--theory and Application

High Temperature Constitutive Modeling--theory and Application PDF Author: A. D. Freed
Publisher:
ISBN:
Category : Materials at high temperatures
Languages : en
Pages : 469

Get Book Here

Book Description


Nonlinear Constitutive Relations for High Temperature Applications, 1986

Nonlinear Constitutive Relations for High Temperature Applications, 1986 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 502

Get Book Here

Book Description


Modeling High Temperature Materials Behavior for Structural Analysis

Modeling High Temperature Materials Behavior for Structural Analysis PDF Author: Konstantin Naumenko
Publisher: Springer
ISBN: 3030203816
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
This second part of the work on creep modeling offers readers essential guidance on practical computational simulation and analysis. Drawing on constitutive equations for creep in structural materials under multi-axial stress states, it applies these equations, which are developed in detail in part 1 of the work, to a diverse range of examples.

Modeling High Temperature Materials Behavior for Structural Analysis

Modeling High Temperature Materials Behavior for Structural Analysis PDF Author: Konstantin Naumenko
Publisher: Springer
ISBN: 331931629X
Category : Science
Languages : en
Pages : 381

Get Book Here

Book Description
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods PDF Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Constitutive Modeling of Engineering Materials

Constitutive Modeling of Engineering Materials PDF Author: Vladimir Buljak
Publisher: Academic Press
ISBN: 0128146974
Category : Technology & Engineering
Languages : en
Pages : 330

Get Book Here

Book Description
Constitutive Modeling of Engineering Materials provides an extensive theoretical overview of elastic, plastic, damage, and fracture models, giving readers the foundational knowledge needed to successfully apply them to and solve common engineering material problems. Particular attention is given to inverse analysis, parameter identification, and the numerical implementation of models with the finite element method. Application in practice is discussed in detail, showing examples of working computer programs for simple constitutive behaviors. Examples explore the important components of material modeling which form the building blocks of any complex constitutive behavior. - Addresses complex behaviors in a wide range of materials, from polymers, to metals and shape memory alloys - Covers constitutive models with both small and large deformations - Provides detailed examples of computer implementations for material models

Unified Plasticity for Engineering Applications

Unified Plasticity for Engineering Applications PDF Author: Sol R. Bodner
Publisher: Springer Science & Business Media
ISBN: 9780306467448
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description
Considerably simplified models of macroscopic material behavior, such as the idealization for metals of elastic-time independent plastic response with a yield (onset) criterion, have served the engineering profession well for many years. They are still basic to the design and analysis of most structural applications. In the need to use materials more effectively, there are circumstances where those traditional models are not adequate, and constitutive laws that are more physically realistic have to be employed. This is especially relevant to conditions where the inherent time dependence of inelastic deformations, referred to as "viscoplasticity", is pronounced such as at elevated temperatures and for high strain rates. Unified theories of elastic-viscoplastic material behavior, which are primarily applicable for metals and metallic alloys, combine all aspects of inelastic response into a set of time dependent equations with a single inelastic strain rate variable. For such theories, creep under constant stress, stress relaxation under constant strain, and stress-strain relations at constant rates are each special cases of a general formulation. Those equations mayor may not include a yield criterion, but models which do not separate a fully elastic region from the overall response could be considered "unified" in a more general sense. The theories have reached a level of development and maturity where they are being used in a number of sophisticated engineering applications. However, they have not yet become a standard method of material representation for general engineering practice.

Unified Constitutive Equations for Creep and Plasticity

Unified Constitutive Equations for Creep and Plasticity PDF Author: A.K. Miller
Publisher: Springer Science & Business Media
ISBN: 9400934394
Category : Technology & Engineering
Languages : en
Pages : 351

Get Book Here

Book Description
Constitutive equations refer to 'the equations that constitute the material response' at any point within an object. They are one of the ingredients necessary to predict the deformation and fracture response of solid bodies (among other ingredients such as the equations of equilibrium and compatibility and mathematical descriptions of the configuration and loading history). These ingredients are generally combined together in complicated computer programs, such as finite element analyses, which serve to both codify the pertinent knowledge and to provide convenient tools for making predictions of peak stresses, plastic strain ranges, crack growth rates, and other quantities of interest. Such predictions fall largely into two classes: structural analysis and manufacturing analysis. In the first category, the usual purpose is life prediction, for assessment of safety, reliability, durability, and/or operational strategies. Some high-technology systems limited by mechanical behavior, and therefore requiring accurate life assess ments, include rocket engines (the space-shuttle main engine being a prominent example), piping and pressure vessels in nuclear and non-nuclear power plants (for example, heat exchanger tubes in solar central receivers and reformer tubes in high-temperature gas-cooled reactors used for process heat applications), and the ubiquitous example of the jet engine turbine blade. In structural analysis, one is sometimes concerned with predicting distortion per se, but more often, one is concerned with predicting fracture; in these cases the informa tion about deformation is an intermediate result en route to the final goal of a life prediction.

Handbook of Materials Behavior Models

Handbook of Materials Behavior Models PDF Author: Jean Lemaitre (ed.)
Publisher: Academic Press
ISBN: 0124433413
Category : Materials
Languages : en
Pages : 1231

Get Book Here

Book Description
V. 1. Deformations of materials -- v. 2. Failures of materials -- v. 3. Multiphysics behaviors includes three-volume index.