High Speed Semiconductor Physics. Theoretical Approaches and Device Physics

High Speed Semiconductor Physics. Theoretical Approaches and Device Physics PDF Author: Cliff Orori Mosiori
Publisher: Anchor Academic Publishing (aap_verlag)
ISBN: 3954899329
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
Solid state physics is a fascinating sub-genre of condensed matter physics - though some graduate students consider it a very boring and tedious subject area in Physics and others even call it a “squalid state”. Topics covered in this book are built on standard solid state physics references available in most online libraries or in other books on solid state physics. The complexity of high speed semiconductor physics and related devices arose from condensed solid state matter. The content covered in this book gives a deep coverage on some topics or sections that may be covered only superficially in other literature. Therefore, these topics are likely to differ a great deal from what is deemed important elsewhere in other books or available literature. There are many extremely good books on solid-state physics and condensed matter physics but very few of these books are restricted to high speed semiconductor physic though. Chapter one covers the general semiconductor qualities that make high speed semiconductor devices effect and includes the theory of crystals, diffusion and ist mechanisms, while chapter two covers solid state materials, material processing for high speed semiconductor devices and an introduction to quantum theory for materials in relation to density of states of the radiation for a black body and ist radiation properties. Chapter three discuss high speed semiconductor energy band theory, energy bands in general solid semiconductor materials, the Debye model, the Einstein model the Debye model and semiconductor transport carriers in 3D semiconductors while chapter four discuss effect of external force on current flow based on the concept of holes valence band, and lattice scattering in high speed devices. Chapter five briefly describes solid state thermoelectric fundamentals, thermoelectric material and thermoelectric theory of solids in lattice and phonons while chapter six scattering in high field effect in semiconductors in inter-valley electron scattering and the associated Fermi Dirac statistics and Maxwell-Boltzmann approximation on their carrier concentration variation with energy in extrinsic doping chapter seven covers p-n junction diodes, varactor diode, pin diode Schottky diode and their transient response of diode in multi-valley semiconductors. Chapter eight discusses high speed metal semiconductor field effect transistors.

High Speed Semiconductor Physics. Theoretical Approaches and Device Physics

High Speed Semiconductor Physics. Theoretical Approaches and Device Physics PDF Author: Cliff Orori Mosiori
Publisher: Anchor Academic Publishing (aap_verlag)
ISBN: 3954899329
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
Solid state physics is a fascinating sub-genre of condensed matter physics - though some graduate students consider it a very boring and tedious subject area in Physics and others even call it a “squalid state”. Topics covered in this book are built on standard solid state physics references available in most online libraries or in other books on solid state physics. The complexity of high speed semiconductor physics and related devices arose from condensed solid state matter. The content covered in this book gives a deep coverage on some topics or sections that may be covered only superficially in other literature. Therefore, these topics are likely to differ a great deal from what is deemed important elsewhere in other books or available literature. There are many extremely good books on solid-state physics and condensed matter physics but very few of these books are restricted to high speed semiconductor physic though. Chapter one covers the general semiconductor qualities that make high speed semiconductor devices effect and includes the theory of crystals, diffusion and ist mechanisms, while chapter two covers solid state materials, material processing for high speed semiconductor devices and an introduction to quantum theory for materials in relation to density of states of the radiation for a black body and ist radiation properties. Chapter three discuss high speed semiconductor energy band theory, energy bands in general solid semiconductor materials, the Debye model, the Einstein model the Debye model and semiconductor transport carriers in 3D semiconductors while chapter four discuss effect of external force on current flow based on the concept of holes valence band, and lattice scattering in high speed devices. Chapter five briefly describes solid state thermoelectric fundamentals, thermoelectric material and thermoelectric theory of solids in lattice and phonons while chapter six scattering in high field effect in semiconductors in inter-valley electron scattering and the associated Fermi Dirac statistics and Maxwell-Boltzmann approximation on their carrier concentration variation with energy in extrinsic doping chapter seven covers p-n junction diodes, varactor diode, pin diode Schottky diode and their transient response of diode in multi-valley semiconductors. Chapter eight discusses high speed metal semiconductor field effect transistors.

Introductory Semiconductor Device Physics for Chip Design and Manufacturing

Introductory Semiconductor Device Physics for Chip Design and Manufacturing PDF Author: Robert W. Keyes
Publisher: Wiley
ISBN: 9781119012016
Category : Technology & Engineering
Languages : en
Pages : 848

Get Book Here

Book Description
An introduction to the fundamentals of semiconductor physics and engineering This book discusses fundamental semiconductor physics of devices and on-chip interconnections for physicists and links these concepts to engineering applications and case studies of computer chips. The book is organized in three parts. The first part deals with the representation of information and computation. The second part covers semiconductor device physics within the context of computation. The third part reviews chip design and semiconductor fabrication. The book includes relevant equations, with the aim of closing the gap in the existing literature with actual case studies and engineering applications. Examples are provided in each chapter to illustrate physical and electrical concepts through the use of high-performance silicon technologies. Introductory Semiconductor Device Physics for Chip Design and Manufacturing: Provides physical descriptions and illustrations with data visualizations to facilitate intuitive understanding of semiconductor physics, devices and on-chip interconnections Blends theoretical physics treatment with engineering applications and real case studies for manufactured chips Presents complementary-metal-oxide-semiconductor (CMOS) transistors in high-performance server microprocessors with static CMOS combinational digital circuit design examples Offers a rich array of student problem sets, mid-term exams, and final exams with a glossary at the end of the book M. Y. Lanzerotti, PhD, has over 15 years of engineering experience in designing integrated circuits for high-performance server chips and aerospace applications. Dr. Lanzerotti is Assistant Professor of Physics at Augsburg College and previously held positions as Associate Professor of Computer Engineering at Air Force Institute of Technology, Instructor at Harvard Summer School, Visiting Faculty Fellow at Pacific Lutheran University, Visiting Faculty Fellow at Sapienza University of Rome, and Research Staff Member at IBM Thomas J. Watson Research Center. This book is inspired from Dr. Lanzerotti’s course, “Introductory Semiconductor Device Physics for Chip Design and Manufacturing,” at Harvard Summer School. Dr. Lanzerotti holds physics degrees from Harvard College, the University of Cambridge, and Cornell University. Dr. Lanzerotti holds four U.S. patents, was awarded an IEEE Technical Innovation Award in 2007 and an IBM Outstanding Research Contribution Award in 1998, and was Editor-in-Chief of the IEEE Solid-State Circuits Society Magazine.

Introductory Semiconductor Device Physics for Chip Design and Manufacturing

Introductory Semiconductor Device Physics for Chip Design and Manufacturing PDF Author: Robert W. Keyes
Publisher: Wiley
ISBN: 9780470624548
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
An introduction to the fundamentals of semiconductor physics and engineering This book discusses fundamental semiconductor physics of devices and on-chip interconnections for physicists and links these concepts to engineering applications and case studies of computer chips. The book is organized in three parts. The first part deals with the representation of information and computation. The second part covers semiconductor device physics within the context of computation. The third part reviews chip design and semiconductor fabrication. The book includes relevant equations, with the aim of closing the gap in the existing literature with actual case studies and engineering applications. Examples are provided in each chapter to illustrate physical and electrical concepts through the use of high-performance silicon technologies. Introductory Semiconductor Device Physics for Chip Design and Manufacturing: Provides physical descriptions and illustrations with data visualizations to facilitate intuitive understanding of semiconductor physics, devices and on-chip interconnections Blends theoretical physics treatment with engineering applications and real case studies for manufactured chips Presents complementary-metal-oxide-semiconductor (CMOS) transistors in high-performance server microprocessors with static CMOS combinational digital circuit design examples Offers a rich array of student problem sets, mid-term exams, and final exams with a glossary at the end of the book M. Y. Lanzerotti, PhD, has over 15 years of engineering experience in designing integrated circuits for high-performance server chips and aerospace applications. Dr. Lanzerotti is Assistant Professor of Physics at Augsburg College and previously held positions as Associate Professor of Computer Engineering at Air Force Institute of Technology, Instructor at Harvard Summer School, Visiting Faculty Fellow at Pacific Lutheran University, Visiting Faculty Fellow at Sapienza University of Rome, and Research Staff Member at IBM Thomas J. Watson Research Center. This book is inspired from Dr. Lanzerotti’s course, “Introductory Semiconductor Device Physics for Chip Design and Manufacturing,” at Harvard Summer School. Dr. Lanzerotti holds physics degrees from Harvard College, the University of Cambridge, and Cornell University. Dr. Lanzerotti holds four U.S. patents, was awarded an IEEE Technical Innovation Award in 2007 and an IBM Outstanding Research Contribution Award in 1998, and was Editor-in-Chief of the IEEE Solid-State Circuits Society Magazine.

Introductory Semiconductor Device Physics for Chip Design and Manufacturing

Introductory Semiconductor Device Physics for Chip Design and Manufacturing PDF Author: Mary Lanzerotti
Publisher: Springer
ISBN: 9783030436421
Category : Technology & Engineering
Languages : en
Pages : 855

Get Book Here

Book Description
This textbook book discusses fundamental semiconductor physics of devices and on-chip interconnections and links these concepts to engineering applications and case studies of computer chips. The book is organized in three parts. The first part deals with the representation of information and computation. The second part covers semiconductor device physics within the context of computation. The third part reviews chip design and semiconductor fabrication. The book includes relevant equations, with the aim of closing the gap in the existing literature with actual case studies and engineering applications. Examples are provided in each chapter to illustrate physical and electrical concepts through the use of high-performance silicon technologies.

Semiconductor Device Physics and Design

Semiconductor Device Physics and Design PDF Author: Umesh Mishra
Publisher: Springer Science & Business Media
ISBN: 1402064802
Category : Technology & Engineering
Languages : en
Pages : 583

Get Book Here

Book Description
Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.

Modern Semiconductor Physics and Device Applications

Modern Semiconductor Physics and Device Applications PDF Author: Vitalii K Dugaev
Publisher: CRC Press
ISBN: 1000462293
Category : Science
Languages : en
Pages : 397

Get Book Here

Book Description
This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Modern Semiconductor Physics and Device Applications

Modern Semiconductor Physics and Device Applications PDF Author: Vitalii K Dugaev
Publisher: CRC Press
ISBN: 1000462331
Category : Science
Languages : en
Pages : 373

Get Book Here

Book Description
This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Physics of Semiconductor Devices

Physics of Semiconductor Devices PDF Author: J.-P. Colinge
Publisher: Springer Science & Business Media
ISBN: 0306476223
Category : Technology & Engineering
Languages : en
Pages : 442

Get Book Here

Book Description
Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.

Fundamentals of Semiconductor Physics and Devices

Fundamentals of Semiconductor Physics and Devices PDF Author: Rolf Enderlein
Publisher: World Scientific
ISBN: 9810223870
Category : Science
Languages : en
Pages : 786

Get Book Here

Book Description
This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both.Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource.In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix.

High Pressure in Semiconductor Physics II

High Pressure in Semiconductor Physics II PDF Author:
Publisher: Academic Press
ISBN: 0080864538
Category : Science
Languages : en
Pages : 477

Get Book Here

Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial pistoncylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.