Author: Isaac Chang
Publisher: Elsevier
ISBN: 085709890X
Category : Technology & Engineering
Languages : en
Pages : 624
Book Description
Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques
Advances in Powder Metallurgy
Author: Isaac Chang
Publisher: Elsevier
ISBN: 085709890X
Category : Technology & Engineering
Languages : en
Pages : 624
Book Description
Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques
Publisher: Elsevier
ISBN: 085709890X
Category : Technology & Engineering
Languages : en
Pages : 624
Book Description
Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques
Modelling of Powder Die Compaction
Author: Peter R. Brewin
Publisher: Springer Science & Business Media
ISBN: 1846280990
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
Manufacture of components from powders frequently requires a compaction step. Modelling of Powder Die Compaction presents a number of case studies that have been developed to test compaction models. It will be bought by researchers involved in developing models of powder compaction as well as by those working in industry, either using powder compaction to make products or using products made by powder compaction.
Publisher: Springer Science & Business Media
ISBN: 1846280990
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
Manufacture of components from powders frequently requires a compaction step. Modelling of Powder Die Compaction presents a number of case studies that have been developed to test compaction models. It will be bought by researchers involved in developing models of powder compaction as well as by those working in industry, either using powder compaction to make products or using products made by powder compaction.
Sintering of Advanced Materials
Author: Zhigang Zak Fang
Publisher: Elsevier
ISBN: 1845699947
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applicationsPart one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering. - Explores the thermodynamics of sintering including sinter bonding and densification - Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering - Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials
Publisher: Elsevier
ISBN: 1845699947
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applicationsPart one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering. - Explores the thermodynamics of sintering including sinter bonding and densification - Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering - Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials
Titanium in Medical and Dental Applications
Author: Francis Froes
Publisher: Woodhead Publishing
ISBN: 0128124571
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
Titanium in Medical and Dental Applications is an essential reference book for those involved in biomedical materials and advanced metals. Written by well-known experts in the field, it covers a broad array of titanium uses, including implants, instruments, devices, the manufacturing processes used to create them, their properties, corrosion resistance and various fabrication approaches. Biomedical titanium materials are a critically important part of biomaterials, especially in cases where non-metallic biomedical materials are not suited to applications, such as the case of load-bearing implants. The book also covers the use of titanium for implants in the medical and dental fields and reviews the use of titanium for medical instruments and devices. - Provides an understanding of the essential and broad applications of Titanium in both the medical and dental industries - Discusses the pathways to manufacturing titanium into critical biomedical and dental devices - Includes insights into further applications within the industry
Publisher: Woodhead Publishing
ISBN: 0128124571
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
Titanium in Medical and Dental Applications is an essential reference book for those involved in biomedical materials and advanced metals. Written by well-known experts in the field, it covers a broad array of titanium uses, including implants, instruments, devices, the manufacturing processes used to create them, their properties, corrosion resistance and various fabrication approaches. Biomedical titanium materials are a critically important part of biomaterials, especially in cases where non-metallic biomedical materials are not suited to applications, such as the case of load-bearing implants. The book also covers the use of titanium for implants in the medical and dental fields and reviews the use of titanium for medical instruments and devices. - Provides an understanding of the essential and broad applications of Titanium in both the medical and dental industries - Discusses the pathways to manufacturing titanium into critical biomedical and dental devices - Includes insights into further applications within the industry
Powder Materials
Author: Fernand D. S. Marquis
Publisher: Wiley-TMS
ISBN:
Category : Science
Languages : en
Pages : 340
Book Description
Compiling presentations from scientists, engineers, and manufacturers, this book will include papers on powder making, powder conditions, reactive powder handling, powder characterization, hot and cold uniaxial pressing, hot and cold isostatic pressing, powder rolling, extrusion, sintering, heat treatment and processing facilities, rapid and directional solidification, consolidation, in-situ synthesis of composites, ceramics and intermetallics, atmospheric and low-pressure plasma spray, flame spray, wire-arc spray, alloy and materials development, mechanical behavior of bulk powder-based materials, physical-based mathematical models, theories, simulation, micromechanisms, and end-use products. From Materials Science & Technology 2003 to be held in Chicago, Illinois, November 9-12, 2003.
Publisher: Wiley-TMS
ISBN:
Category : Science
Languages : en
Pages : 340
Book Description
Compiling presentations from scientists, engineers, and manufacturers, this book will include papers on powder making, powder conditions, reactive powder handling, powder characterization, hot and cold uniaxial pressing, hot and cold isostatic pressing, powder rolling, extrusion, sintering, heat treatment and processing facilities, rapid and directional solidification, consolidation, in-situ synthesis of composites, ceramics and intermetallics, atmospheric and low-pressure plasma spray, flame spray, wire-arc spray, alloy and materials development, mechanical behavior of bulk powder-based materials, physical-based mathematical models, theories, simulation, micromechanisms, and end-use products. From Materials Science & Technology 2003 to be held in Chicago, Illinois, November 9-12, 2003.
Integrated Computational Materials Engineering (ICME) for Metals
Author: Mark F. Horstemeyer
Publisher: John Wiley & Sons
ISBN: 1119018382
Category : Technology & Engineering
Languages : en
Pages : 654
Book Description
Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.
Publisher: John Wiley & Sons
ISBN: 1119018382
Category : Technology & Engineering
Languages : en
Pages : 654
Book Description
Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.
Computational Plasticity in Powder Forming Processes
Author: Amir Khoei
Publisher: Elsevier
ISBN: 0080529704
Category : Technology & Engineering
Languages : en
Pages : 483
Book Description
The powder forming process is an extremely effective method of manufacturing structural metal components with high-dimensional accuracy on a mass production basis. The process is applicable to nearly all industry sectors. It offers competitive engineering solutions in terms of technical performance and manufacturing costs. For these reasons, powder metallurgy is developing faster than other metal forming technology. Computational Plasticity in Powder Forming Proceses takes a specific look at the application of computer-aided engineering in modern powder forming technologies, with particular attention given to the Finite Element Method (FEM). FEM analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically.* Describes the mechanical behavior of powder materials using classical and modern constitutive theories.* Devoted to the application of adaptive FEM strategy in the analysis of powder forming processes.* 2D and 3D numerical modeling of powder forming processes are presented, using advanced plasticity models.
Publisher: Elsevier
ISBN: 0080529704
Category : Technology & Engineering
Languages : en
Pages : 483
Book Description
The powder forming process is an extremely effective method of manufacturing structural metal components with high-dimensional accuracy on a mass production basis. The process is applicable to nearly all industry sectors. It offers competitive engineering solutions in terms of technical performance and manufacturing costs. For these reasons, powder metallurgy is developing faster than other metal forming technology. Computational Plasticity in Powder Forming Proceses takes a specific look at the application of computer-aided engineering in modern powder forming technologies, with particular attention given to the Finite Element Method (FEM). FEM analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically.* Describes the mechanical behavior of powder materials using classical and modern constitutive theories.* Devoted to the application of adaptive FEM strategy in the analysis of powder forming processes.* 2D and 3D numerical modeling of powder forming processes are presented, using advanced plasticity models.
ASM Handbook
Author: ASM International
Publisher:
ISBN: 9780871707055
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780871707055
Category :
Languages : en
Pages : 0
Book Description
Processes and Design for Manufacturing, Third Edition
Author: Sherif D. El Wakil
Publisher: CRC Press
ISBN: 0429014910
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Processes and Design for Manufacturing, Third Edition, examines manufacturing processes from the viewpoint of the product designer, investigating the selection of manufacturing methods in the early phases of design and how this affects the constructional features of a product. The stages from design process to product development are examined, integrating an evaluation of cost factors. The text emphasizes both a general design orientation and a systems approach and covers topics such as additive manufacturing, concurrent engineering, polymeric and composite materials, cost estimation, design for assembly, and environmental factors. Appendices with materials engineering data are also included.
Publisher: CRC Press
ISBN: 0429014910
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Processes and Design for Manufacturing, Third Edition, examines manufacturing processes from the viewpoint of the product designer, investigating the selection of manufacturing methods in the early phases of design and how this affects the constructional features of a product. The stages from design process to product development are examined, integrating an evaluation of cost factors. The text emphasizes both a general design orientation and a systems approach and covers topics such as additive manufacturing, concurrent engineering, polymeric and composite materials, cost estimation, design for assembly, and environmental factors. Appendices with materials engineering data are also included.
Powder Technology Handbook
Author: Hiroaki Masuda
Publisher: CRC Press
ISBN: 1439831882
Category : Science
Languages : en
Pages : 920
Book Description
The Powder Technology Handbook, Third Edition provides a comprehensive guide to powder technology while examining the fundamental engineering processes of particulate technology. The book offers a well-rounded perspective on powder technologies that extends from particle to powder and from basic problems to actual applications. Pro
Publisher: CRC Press
ISBN: 1439831882
Category : Science
Languages : en
Pages : 920
Book Description
The Powder Technology Handbook, Third Edition provides a comprehensive guide to powder technology while examining the fundamental engineering processes of particulate technology. The book offers a well-rounded perspective on powder technologies that extends from particle to powder and from basic problems to actual applications. Pro