High Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes

High Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes PDF Author: Yong-Tao Zhang
Publisher:
ISBN:
Category : Computational grids (Computer systems)
Languages : en
Pages : 38

Get Book Here

Book Description
In this paper we construct high order weighted essentially non-oscillatory (WENO) schems for solving the nonlinear Hamilton-Jacobi equations on two-dimensional unstructured meshes. The main ideas are nodal based approximations, the usage of monotone Hamiltonians as building blocks on unstructured meshes, nonlinear weights using smooth indicators of second and higher derivatives, and a strategy to choose diversified smaller stencils to make up the bigger stencil in the WENO procedure. Both third-order and fourth-order WENO schemes using combinations of second-order approximations with nonlinear weights are constructed. Extensive numerical experiments are performed to demonstrate the stability and accuracy of the methods. High-order accuracy in smooth regions, good resolution of derivative singularities, and convergence to viscosity solutions are observed.

High Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes

High Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes PDF Author: Yong-Tao Zhang
Publisher:
ISBN:
Category : Computational grids (Computer systems)
Languages : en
Pages : 38

Get Book Here

Book Description
In this paper we construct high order weighted essentially non-oscillatory (WENO) schems for solving the nonlinear Hamilton-Jacobi equations on two-dimensional unstructured meshes. The main ideas are nodal based approximations, the usage of monotone Hamiltonians as building blocks on unstructured meshes, nonlinear weights using smooth indicators of second and higher derivatives, and a strategy to choose diversified smaller stencils to make up the bigger stencil in the WENO procedure. Both third-order and fourth-order WENO schemes using combinations of second-order approximations with nonlinear weights are constructed. Extensive numerical experiments are performed to demonstrate the stability and accuracy of the methods. High-order accuracy in smooth regions, good resolution of derivative singularities, and convergence to viscosity solutions are observed.

High-Order Central Weno Schemes for Multi-Dimensional Hamilton-Jacobi Equations

High-Order Central Weno Schemes for Multi-Dimensional Hamilton-Jacobi Equations PDF Author: Steve Bryson
Publisher: BiblioGov
ISBN: 9781289290528
Category :
Languages : en
Pages : 42

Get Book Here

Book Description
We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third-order scheme: one scheme that is based on a genuinely two-dimensional Central WENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multi-dimensional fifth-order scheme. Our numerical examples in one, two and three space dimensions verify the expected order of accuracy of the schemes.

Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems PDF Author: Remi Abgrall
Publisher: Elsevier
ISBN: 0444637958
Category : Mathematics
Languages : en
Pages : 668

Get Book Here

Book Description
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications - Written by leading subject experts in each field who provide breadth and depth of content coverage

Numerical Analysis and Its Applications

Numerical Analysis and Its Applications PDF Author: Svetozar Margenov
Publisher: Springer Science & Business Media
ISBN: 3642004636
Category : Computers
Languages : en
Pages : 646

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on Numerical Analysis and Its Applications, NAA 2008, held in Lozenetz, Bulgaria in June 2008. The 61 revised full papers presented together with 13 invited papers were carefully selected during two rounds of reviewing and improvement. The papers address all current aspects of numerical analysis and discuss a wide range of problems concerning recent achievements in physics, chemistry, engineering, and economics. A special focus is given to numerical approximation and computational geometry, numerical linear algebra and numerical solution of transcendental equations, numerical methods for differential equations, numerical modeling, and high performance scientific computing.

Numerical Mathematics and Advanced Applications

Numerical Mathematics and Advanced Applications PDF Author: Miloslav Feistauer
Publisher: Springer Science & Business Media
ISBN: 3642187757
Category : Mathematics
Languages : en
Pages : 873

Get Book Here

Book Description
These proceedings collect the major part of the lectures given at ENU MATH2003, the European Conference on Numerical Mathematics and Ad vanced Applications, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men tion fluid dynamics, continuum mechanics, electromagnetism, phase transi tion, cosmology, medicine, economics, finance, etc. The success of applications of numerical methods is conditioned by changing its basic instruments and looking for new appropriate techniques adapted to new problems as well as new computer architectures. The ENUMATH conferences were established in order to provide a fo rum for discussion of current topics of numerical mathematics. They seek to convene leading experts and young scientists with special emphasis on con tributions from Europe. Recent results and new trends are discussed in the analysis of numerical algorithms as well as in their applications to challenging scientific and industrial problems. The first ENUMATH conference was organized in Paris in 1995, then the series continued by the conferences in Heidelberg 1997, Jyvaskyla 1999 and Ischia Porto 2001. It was a great pleasure and honour for the Czech numerical community that it was decided at Ischia Porto to organize the ENUMATH2003 in Prague. It was the first time when this conference crossed the former Iron Courtain and was organized in a postsocialist country.

Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications PDF Author: Thomas Y. Hou
Publisher: Springer Science & Business Media
ISBN: 9783540443339
Category : Mathematics
Languages : en
Pages : 986

Get Book Here

Book Description
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations PDF Author: Maurizio Falcone
Publisher: SIAM
ISBN: 161197304X
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.

System Modeling and Optimization

System Modeling and Optimization PDF Author: Christian Pötzsche
Publisher: Springer
ISBN: 3662455048
Category : Computers
Languages : en
Pages : 371

Get Book Here

Book Description
This book is a collection of thoroughly refereed papers presented at the 26th IFIP TC 7 Conference on System Modeling and Optimization, held in Klagenfurt, Austria, in September 2013. The 34 revised papers were carefully selected from numerous submissions. They cover the latest progress in a wide range of topics such as optimal control of ordinary and partial differential equations, modeling and simulation, inverse problems, nonlinear, discrete, and stochastic optimization as well as industrial applications.

High-Order Methods for Computational Physics

High-Order Methods for Computational Physics PDF Author: Timothy J. Barth
Publisher: Springer Science & Business Media
ISBN: 366203882X
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.

A Technique of Treating Negative Weights in WENO Schemes

A Technique of Treating Negative Weights in WENO Schemes PDF Author: Jing Shi
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 24

Get Book Here

Book Description
High order accurate weighted essentially non-oscillatory (WENO) schemes have recently been developed for finite difference and finite volume methods both in structural and in unstructured meshes. A key idea in WENO scheme is a linear combination of lower order fluxes or reconstructions to obtain a high order approximation. The combination coefficients, also called linear weights, are determined by local geometry of the mesh and order of accuracy and may become negative. WENO procedures cannot be applied directly to obtain a stable scheme if negative linear weights are present. Previous strategy for handling this difficulty is by either regrouping of stencils or reducing the order of accuracy to get rid of the negative linear weights. In this paper we present a simple and effective technique for handling negative linear weights without a need to get rid of them.