Author: Christian Houdré
Publisher: Birkhäuser
ISBN: 3319405195
Category : Mathematics
Languages : en
Pages : 480
Book Description
This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.
High Dimensional Probability VII
Author: Christian Houdré
Publisher: Birkhäuser
ISBN: 3319405195
Category : Mathematics
Languages : en
Pages : 480
Book Description
This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.
Publisher: Birkhäuser
ISBN: 3319405195
Category : Mathematics
Languages : en
Pages : 480
Book Description
This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.
High Dimensional Probability IX
Author: Radosław Adamczak
Publisher: Springer Nature
ISBN: 3031269799
Category : Mathematics
Languages : en
Pages : 445
Book Description
This volume collects selected papers from the Ninth High Dimensional Probability Conference, held virtually from June 15-19, 2020. These papers cover a wide range of topics and demonstrate how high-dimensional probability remains an active area of research with applications across many mathematical disciplines. Chapters are organized around four general topics: inequalities and convexity; limit theorems; stochastic processes; and high-dimensional statistics. High Dimensional Probability IX will be a valuable resource for researchers in this area.
Publisher: Springer Nature
ISBN: 3031269799
Category : Mathematics
Languages : en
Pages : 445
Book Description
This volume collects selected papers from the Ninth High Dimensional Probability Conference, held virtually from June 15-19, 2020. These papers cover a wide range of topics and demonstrate how high-dimensional probability remains an active area of research with applications across many mathematical disciplines. Chapters are organized around four general topics: inequalities and convexity; limit theorems; stochastic processes; and high-dimensional statistics. High Dimensional Probability IX will be a valuable resource for researchers in this area.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
High Dimensional Probability
Author: Ernst Eberlein
Publisher: Birkhäuser
ISBN: 3034888295
Category : Mathematics
Languages : en
Pages : 336
Book Description
What is high dimensional probability? Under this broad name we collect topics with a common philosophy, where the idea of high dimension plays a key role, either in the problem or in the methods by which it is approached. Let us give a specific example that can be immediately understood, that of Gaussian processes. Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. Assuming some regularity on the covariance, one tried to take advantage of the structure of the index set. Around 1970 it was understood, in particular by Dudley, Feldman, Gross, and Segal that a more abstract and intrinsic point of view was much more fruitful. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process. This shift in perspective subsequently lead to a considerable clarification of many aspects of Gaussian process theory, and also to its applications in other settings.
Publisher: Birkhäuser
ISBN: 3034888295
Category : Mathematics
Languages : en
Pages : 336
Book Description
What is high dimensional probability? Under this broad name we collect topics with a common philosophy, where the idea of high dimension plays a key role, either in the problem or in the methods by which it is approached. Let us give a specific example that can be immediately understood, that of Gaussian processes. Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. Assuming some regularity on the covariance, one tried to take advantage of the structure of the index set. Around 1970 it was understood, in particular by Dudley, Feldman, Gross, and Segal that a more abstract and intrinsic point of view was much more fruitful. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process. This shift in perspective subsequently lead to a considerable clarification of many aspects of Gaussian process theory, and also to its applications in other settings.
Convexity and Concentration
Author: Eric Carlen
Publisher: Springer
ISBN: 1493970054
Category : Mathematics
Languages : en
Pages : 620
Book Description
This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute of Mathematics and its Applications during the Spring 2015 where geometric analysis, convex geometry and concentration phenomena were the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The volume is organized into two parts. Part I contains those contributions that focus primarily on problems motivated by probability theory, while Part II contains those contributions that focus primarily on problems motivated by convex geometry and geometric analysis. This book will be of use to those who research convex geometry, geometric analysis and probability directly or apply such methods in other fields.
Publisher: Springer
ISBN: 1493970054
Category : Mathematics
Languages : en
Pages : 620
Book Description
This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute of Mathematics and its Applications during the Spring 2015 where geometric analysis, convex geometry and concentration phenomena were the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The volume is organized into two parts. Part I contains those contributions that focus primarily on problems motivated by probability theory, while Part II contains those contributions that focus primarily on problems motivated by convex geometry and geometric analysis. This book will be of use to those who research convex geometry, geometric analysis and probability directly or apply such methods in other fields.
High Dimensional Probability III
Author: Joergen Hoffmann-Joergensen
Publisher: Birkhäuser
ISBN: 3034880596
Category : Mathematics
Languages : en
Pages : 343
Book Description
The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s. Many of the problems that motivated researchers at that time were solved. But the powerful new tools created for their solution turned out to be applicable to other important areas of probability. They led to significant advances in the study of empirical processes and other topics in theoretical statistics and to a new approach to the study of aspects of Lévy processes and Markov processes in general. The papers in this book reflect these broad categories. The volume thus will be a valuable resource for postgraduates and reseachers in probability theory and mathematical statistics.
Publisher: Birkhäuser
ISBN: 3034880596
Category : Mathematics
Languages : en
Pages : 343
Book Description
The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s. Many of the problems that motivated researchers at that time were solved. But the powerful new tools created for their solution turned out to be applicable to other important areas of probability. They led to significant advances in the study of empirical processes and other topics in theoretical statistics and to a new approach to the study of aspects of Lévy processes and Markov processes in general. The papers in this book reflect these broad categories. The volume thus will be a valuable resource for postgraduates and reseachers in probability theory and mathematical statistics.
Upper and Lower Bounds for Stochastic Processes
Author: Michel Talagrand
Publisher: Springer Nature
ISBN: 3030825957
Category : Mathematics
Languages : en
Pages : 727
Book Description
This book provides an in-depth account of modern methods used to bound the supremum of stochastic processes. Starting from first principles, it takes the reader to the frontier of current research. This second edition has been completely rewritten, offering substantial improvements to the exposition and simplified proofs, as well as new results. The book starts with a thorough account of the generic chaining, a remarkably simple and powerful method to bound a stochastic process that should belong to every probabilist’s toolkit. The effectiveness of the scheme is demonstrated by the characterization of sample boundedness of Gaussian processes. Much of the book is devoted to exploring the wealth of ideas and results generated by thirty years of efforts to extend this result to more general classes of processes, culminating in the recent solution of several key conjectures. A large part of this unique book is devoted to the author’s influential work. While many of the results presented are rather advanced, others bear on the very foundations of probability theory. In addition to providing an invaluable reference for researchers, the book should therefore also be of interest to a wide range of readers.
Publisher: Springer Nature
ISBN: 3030825957
Category : Mathematics
Languages : en
Pages : 727
Book Description
This book provides an in-depth account of modern methods used to bound the supremum of stochastic processes. Starting from first principles, it takes the reader to the frontier of current research. This second edition has been completely rewritten, offering substantial improvements to the exposition and simplified proofs, as well as new results. The book starts with a thorough account of the generic chaining, a remarkably simple and powerful method to bound a stochastic process that should belong to every probabilist’s toolkit. The effectiveness of the scheme is demonstrated by the characterization of sample boundedness of Gaussian processes. Much of the book is devoted to exploring the wealth of ideas and results generated by thirty years of efforts to extend this result to more general classes of processes, culminating in the recent solution of several key conjectures. A large part of this unique book is devoted to the author’s influential work. While many of the results presented are rather advanced, others bear on the very foundations of probability theory. In addition to providing an invaluable reference for researchers, the book should therefore also be of interest to a wide range of readers.
An Invitation to Statistics in Wasserstein Space
Author: Victor M. Panaretos
Publisher: Springer Nature
ISBN: 3030384381
Category : Mathematics
Languages : en
Pages : 157
Book Description
This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.
Publisher: Springer Nature
ISBN: 3030384381
Category : Mathematics
Languages : en
Pages : 157
Book Description
This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.
Asymptotic Properties of Permanental Sequences
Author: Michael B. Marcus
Publisher: Springer Nature
ISBN: 3030694852
Category : Mathematics
Languages : en
Pages : 121
Book Description
This SpringerBriefs employs a novel approach to obtain the precise asymptotic behavior at infinity of a large class of permanental sequences related to birth and death processes and autoregressive Gaussian sequences using techniques from the theory of Gaussian processes and Markov chains. The authors study alpha-permanental processes that are positive infinitely divisible processes determined by the potential density of a transient Markov process. When the Markov process is symmetric, a 1/2-permanental process is the square of a Gaussian process. Permanental processes are related by the Dynkin isomorphism theorem to the total accumulated local time of the Markov process when the potential density is symmetric, and by a generalization of the Dynkin theorem by Eisenbaum and Kaspi without requiring symmetry. Permanental processes are also related to chi square processes and loop soups. The book appeals to researchers and advanced graduate students interested in stochastic processes, infinitely divisible processes and Markov chains.
Publisher: Springer Nature
ISBN: 3030694852
Category : Mathematics
Languages : en
Pages : 121
Book Description
This SpringerBriefs employs a novel approach to obtain the precise asymptotic behavior at infinity of a large class of permanental sequences related to birth and death processes and autoregressive Gaussian sequences using techniques from the theory of Gaussian processes and Markov chains. The authors study alpha-permanental processes that are positive infinitely divisible processes determined by the potential density of a transient Markov process. When the Markov process is symmetric, a 1/2-permanental process is the square of a Gaussian process. Permanental processes are related by the Dynkin isomorphism theorem to the total accumulated local time of the Markov process when the potential density is symmetric, and by a generalization of the Dynkin theorem by Eisenbaum and Kaspi without requiring symmetry. Permanental processes are also related to chi square processes and loop soups. The book appeals to researchers and advanced graduate students interested in stochastic processes, infinitely divisible processes and Markov chains.
Geometric Aspects of Functional Analysis
Author: Bo'az Klartag
Publisher: Springer Nature
ISBN: 3030467627
Category : Mathematics
Languages : en
Pages : 350
Book Description
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Publisher: Springer Nature
ISBN: 3030467627
Category : Mathematics
Languages : en
Pages : 350
Book Description
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.