Heterogeneous Reservoir Characterization Utilizing Efficient Geology Preserving Reservoir Parameterization Through Higher Order Singular Value Decomposition (HOSVD)

Heterogeneous Reservoir Characterization Utilizing Efficient Geology Preserving Reservoir Parameterization Through Higher Order Singular Value Decomposition (HOSVD) PDF Author: Sardar Afra
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Petroleum reservoir parameter inference is a challenging problem to many of the reservoir simulation work flows, especially when it comes to real reservoirs with high degree of complexity and non-linearity, and high dimensionality. In fact, the process of estimating a large number of unknowns in an inverse problem lead to a very costly computational effort. Moreover, it is very important to perform geologically consistent reservoir parameter adjustments as data is being assimilated in the history matching process, i.e., the process of adjusting the parameters of reservoir system in order to match the output of the reservoir model with the previous reservoir production data. As a matter of fact, it is of great interest to approximate reservoir petrophysical properties like permeability and porosity while reparameterizing these parameters through reduced-order models. As we will show, petroleum reservoir models are commonly described by in general complex, nonlinear, and large-scale, i.e., large number of states and unknown parameters. Thus, having a practical approach to reduce the number of reservoir parameters in order to reconstruct the reservoir model with a lower dimensionality is of high interest. Furthermore, de-correlating system parameters in all history matching and reservoir characterization problems keeping the geological description intact is paramount to control the ill-posedness of the system. In the first part of the present work, we will introduce the advantages of a novel parameterization method by means of higher order singular value decomposition analysis (HOSVD). We will show that HOSVD outperforms classical parameterization techniques with respect to computational and implementation cost. It also, provides more reliable and accurate predictions in the petroleum reservoir history matching problem due to its capability to preserve geological features of the reservoir parameter like permeability. The promising power of HOSVD is investigated through several synthetic and real petroleum reservoir benchmarks and all results are compared to that of classic SVD. In addition to the parameterization problem, we also addressed the ability of HOSVD in producing accurate production data comparing to those of original reservoir system. To generate the results of the present work, we employ a commercial reservoir simulator known as ECLIPSE. In the second part of the work, we will address the inverse modeling, i.e., the reservoir history matching problem. We employed the ensemble Kalman filter (EnKF) which is an ensemble-based characterization approach to solve the inverse problem. We also, integrate our new parameterization technique into the EnKF algorithm to study the suitability of HOSVD based parameterization for reducing the dimensionality of parameter space and for estimating geologically consistence permeability distributions. The results of the present work illustrates the characteristics of the proposed parameterization method by several numerical examples in the second part including synthetic and real reservoir benchmarks. Moreover, the HOSVD advantages are discussed by comparing its performance to the classic SVD (PCA) parameterization approach. In the first part of the present work, we will introduce the advantages of a novel parameterization method by means of higher order singular value decomposition analysis (HOSVD). We will show that HOSVD outperforms classical parameterization techniques with respect to computational and implementation cost. It also, provides more reliable and accurate predictions in the petroleum reservoir history matching problem due to its capability to preserve geological features of the reservoir parameter like permeability. The promising power of HOSVD is investigated through several synthetic and real petroleum reservoir benchmarks and all results are compared to that of classic SVD. In addition to the parameterization problem, we also addressed the ability of HOSVD in producing accurate production data comparing to those of original reservoir system. To generate the results of the present work, we employ a commercial reservoir simulator known as ECLIPSE. In the second part of the work, we will address the inverse modeling, i.e., the reservoir history matching problem. We employed the ensemble Kalman filter (EnKF) which is an ensemble-based characterization approach to solve the inverse problem. We also, integrate our new parameterization technique into the EnKF algorithm to study the suitability of HOSVD based parameterization for reducing the dimensionality of parameter space and for estimating geologically consistence permeability distributions. The results of the present work illustrate the characteristics of the proposed parameterization method by several numerical examples in the second part including synthetic and real reservoir benchmarks. Moreover, the HOSVD advantages are discussed by comparing its performance to the classic SVD (PCA) parameterization approach. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/154968

Reservoir Characterization

Reservoir Characterization PDF Author: Larry Lake
Publisher: Elsevier
ISBN: 0323143512
Category : Technology & Engineering
Languages : en
Pages : 680

Get Book Here

Book Description
Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.

Reservoir Characterization II

Reservoir Characterization II PDF Author: Lake
Publisher: Academic Press
ISBN: 0323140270
Category : Nature
Languages : en
Pages : 745

Get Book Here

Book Description
Reservoir Characterization II contains the proceedings of the Second International Reservoir Characterization Conference held in Dallas, Texas in June 1989. Contributors focus on the characterization of reservoir processes and cover topics ranging from surface roughness in porous media and reservoir characterization at the mesoscopic scale to shale clast heterogeneities and their effect on fluid flow, permeability patterns in fluvial sandstones, and reservoir management using 3-D seismic data. This book is organized into six sections encompassing 43 chapters. The first 20 chapters deal with reservoir characterization at the microscopic, mesoscopic, and macroscopic scales. Topics include low-contrast resistivity sandstone formations; the use of centrifuge and computer tomography to quantify saturation distribution and capillary pressures; and cross-well seismology as a tool for reservoir geophysics. The chapters that follow deal with reservoir characterization at the megascopic scale; fractal heterogeneity of clastic reservoirs; heterogeneity and effective permeability of porous rocks; and drilling fluid design based on reservoir characterization. A chapter that outlines a procedure for estimating permeability anisotropy with a minipermeameter concludes the book. This book is a valuable resource for students and practitioners of petroleum engineering, geology and geological engineering, petroleum exploration, and geophysics.

Reservoir Characterization, Modeling and Quantitative Interpretation

Reservoir Characterization, Modeling and Quantitative Interpretation PDF Author: Shib Sankar Ganguli
Publisher: Elsevier
ISBN: 032399718X
Category : Science
Languages : en
Pages : 518

Get Book Here

Book Description
Reservoir Characterization, Modeling and Quantitative Interpretation: Recent Workflows to Emerging Technologies offers a wide spectrum of reservoir characterization techniques and technologies, focusing on the latest breakthroughs and most efficient methodologies in hydrocarbon exploration and development. Topics covered include 4D seismic technologies, AVAz inversion, fracture characterization, multiscale imaging technologies, static and dynamic reservoir characterization, among others. The content is delivered through an inductive approach, which will help readers gain comprehensive insights on advanced practices and be able to relate them to other subareas of reservoir characterization, including CO2 storage and data-driven modeling. This will be especially useful for field scientists in collecting and analyzing field data, prospect evaluation, developing reservoir models, and adopting new technologies to mitigate exploration risk. They will be able to solve the practical and challenging problems faced in the field of reservoir characterization, as it will offer systematic industrial workflows covering every aspect of this branch of Earth Science, including subsurface geoscientific perspectives of carbon geosequestration. This resource is a 21st Century guide for exploration geologists, geoscience students at postgraduate level and above, and petrophysicists working in the oil and gas industry. - Covers the latest and most effective technologies in reservoir characterization, including Avo analysis, AVAz inversion, wave field separation and Machine Learning techniques - Provides a balanced blend of both theoretical and practical approaches for solving challenges in reservoir characterization - Includes detailed industry-standard practical workflows, along with code structures for algorithms and practice exercises

Integrated Reservoir Characterization Using Optimal Non-parametric Transformations and Structure Preserving Inversion

Integrated Reservoir Characterization Using Optimal Non-parametric Transformations and Structure Preserving Inversion PDF Author: Guoping Xue
Publisher:
ISBN:
Category :
Languages : en
Pages : 330

Get Book Here

Book Description


Practical Reservoir Engineering and Characterization

Practical Reservoir Engineering and Characterization PDF Author: Richard O. Baker
Publisher: Gulf Professional Publishing
ISBN: 0128018232
Category : Technology & Engineering
Languages : en
Pages : 535

Get Book Here

Book Description
Practical Reservoir Characterization expertly explains key technologies, concepts, methods, and terminology in a way that allows readers in varying roles to appreciate the resulting interpretations and contribute to building reservoir characterization models that improve resource definition and recovery even in the most complex depositional environments. It is the perfect reference for senior reservoir engineers who want to increase their awareness of the latest in best practices, but is also ideal for team members who need to better understand their role in the characterization process. The text focuses on only the most critical areas, including modeling the reservoir unit, predicting well behavior, understanding past reservoir performance, and forecasting future reservoir performance. The text begins with an overview of the methods required for analyzing, characterizing, and developing real reservoirs, then explains the different methodologies and the types and sources of data required to characterize, forecast, and simulate a reservoir. - Thoroughly explains the data gathering methods required to characterize, forecast, and simulate a reservoir - Provides the fundamental background required to analyze, characterize, and develop real reservoirs in the most complex depositional environments - Presents a step-by-step approach for building a one, two, or three-dimensional representation of all reservoir types

Reservoir Characterization

Reservoir Characterization PDF Author: Fred Aminzadeh
Publisher: John Wiley & Sons
ISBN: 111955621X
Category : Science
Languages : en
Pages : 578

Get Book Here

Book Description
RESERVOIR CHARACTERIZATION The second volume in the series, “Sustainable Energy Engineering,” written by some of the foremost authorities in the world on reservoir engineering, this groundbreaking new volume presents the most comprehensive and updated new processes, equipment, and practical applications in the field. Long thought of as not being “sustainable,” newly discovered sources of petroleum and newly developed methods for petroleum extraction have made it clear that not only can the petroleum industry march toward sustainability, but it can be made “greener” and more environmentally friendly. Sustainable energy engineering is where the technical, economic, and environmental aspects of energy production intersect and affect each other. This collection of papers covers the strategic and economic implications of methods used to characterize petroleum reservoirs. Born out of the journal by the same name, formerly published by Scrivener Publishing, most of the articles in this volume have been updated, and there are some new additions, as well, to keep the engineer abreast of any updates and new methods in the industry. Truly a snapshot of the state of the art, this groundbreaking volume is a must-have for any petroleum engineer working in the field, environmental engineers, petroleum engineering students, and any other engineer or scientist working with reservoirs. This outstanding new volume: Is a collection of papers on reservoir characterization written by world-renowned engineers and scientists and presents them here, in one volume Contains in-depth coverage of not just the fundamentals of reservoir characterization, but the anomalies and challenges, set in application-based, real-world situations Covers reservoir characterization for the engineer to be able to solve daily problems on the job, whether in the field or in the office Deconstructs myths that are prevalent and deeply rooted in the industry and reconstructs logical solutions Is a valuable resource for the veteran engineer, new hire, or petroleum engineering student

Reservoir Characterization and History Matching with Uncertainty Quantification Using Ensemble-based Data Assimilation with Data Re-parameterization

Reservoir Characterization and History Matching with Uncertainty Quantification Using Ensemble-based Data Assimilation with Data Re-parameterization PDF Author: Mingliang Liu
Publisher:
ISBN:
Category : Carbon sequestration
Languages : en
Pages : 153

Get Book Here

Book Description
Reservoir characterization and history matching are essential steps in various subsurface applications, such as petroleum exploration and production and geological carbon sequestration, aiming to estimate the rock and fluid properties of the subsurface from geophysical measurements and borehole data. Mathematically, both tasks can be formulated as inverse problems, which attempt to find optimal earth models that are consistent with the true measurements. The objective of this dissertation is to develop a stochastic inversion method to improve the accuracy of predicted reservoir properties as well as quantification of the associated uncertainty by assimilating both the surface geophysical observations and the production data from borehole using Ensemble Smoother with Multiple Data Assimilation. To avoid the common phenomenon of ensemble collapse in which the model uncertainty would be underestimated, we propose to re-parameterize the high-dimensional geophysics data with data order reduction methods, for example, singular value decomposition and deep convolutional autoencoder, and then perform the models updating efficiently in the low-dimensional data space. We first apply the method to seismic and rock physics inversion for the joint estimation of elastic and petrophysical properties from the pre-stack seismic data. In the production or monitoring stage, we extend the proposed method to seismic history matching for the prediction of porosity and permeability models by integrating both the time-lapse seismic and production data. The proposed method is tested on synthetic examples and successfully applied in petroleum exploration and production and carbon dioxide sequestration.

Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers

Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers PDF Author: Roger M. Slatt
Publisher: Elsevier Inc. Chapters
ISBN: 0128082720
Category : Technology & Engineering
Languages : en
Pages : 73

Get Book Here

Book Description
Reservoir quality controls the storage, distribution, and flow of fluids within a reservoir. Porosity and permeability are key parameters that are readily measured on rock samples and from well logs; with calibration, porosity can be mapped from 3D seismic surveys. If core material is obtained from a well and porosity and permeability measurements are made on the core, the values can be compared with porosity logs and a permeability log can be developed. Although “flow units” can be determined using a suite of geologic and petrophysical parameters, method uses only the three easily obtained wellbore parameters of porosity, permeability, and thickness to calculate flow units in terms of their capacity to store and transmit fluids within the reservoir. Three-dimensional flow-unit models of a reservoir can be used for reservoir fluid-flow and performance simulation. Flow units can be upscaled, as needed, to meet the requirements of computing time and capability. Capillary properties of a rock also affect the storage and flow of fluids through the rock. Capillary properties are routinely measured and used to determine fluid saturations, height of the oil column above the free water level, and maximum height of the column that can be retained by a reservoir topseal. These are very important parameters for characterizing a reservoir for development and management purposes. Values of porosity, permeability, and capillarity will vary not only according to the nature of rocks comprising a reservoir but also according to the way in which the values were obtained. Caution is the key to interpreting laboratory-derived data, and it is worth knowing just how and where on a rock sample the measurements were made prior to using them for reservoir characterization. Also, upscaling or averaging values such as Sw can provide misleading results, particularly in thin-bedded stratigraphic intervals. The greater the amount of upscaling, the less realistic the reservoir geologic model becomes!

Reservoir Characterization

Reservoir Characterization PDF Author: Richard A. Schatzinger
Publisher:
ISBN: 9780891813514
Category : Hydrocarbon reservoirs
Languages : en
Pages : 0

Get Book Here

Book Description
Reservoir characterization is the process of creating an interdisciplinary high-resolution geoscience model that incorporates, integrates, and reconciles various types of geological and engineering information from pore to basin scale. Papers from the Fourth International Reservoir Characterization Technical Conference (1997), sponsored by the U.S. Department of Energy, this publication is a unique compilation of 27 papers covering every aspect of reservoir characterization and has been a popular AAPG publication since that time.