Heegaard Floer Homology of Certain 3-manifolds and Cobordism Invariants

Heegaard Floer Homology of Certain 3-manifolds and Cobordism Invariants PDF Author: Daniel Selahi Durusoy
Publisher:
ISBN:
Category : Cobordism theory
Languages : en
Pages : 104

Get Book Here

Book Description

Heegaard Floer Homology of Certain 3-manifolds and Cobordism Invariants

Heegaard Floer Homology of Certain 3-manifolds and Cobordism Invariants PDF Author: Daniel Selahi Durusoy
Publisher:
ISBN:
Category : Cobordism theory
Languages : en
Pages : 104

Get Book Here

Book Description


Bordered Heegaard Floer Homology

Bordered Heegaard Floer Homology PDF Author: Robert Lipshitz
Publisher: American Mathematical Soc.
ISBN: 1470428881
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.

Invariants of Homology 3-Spheres

Invariants of Homology 3-Spheres PDF Author: Nikolai Saveliev
Publisher: Springer Science & Business Media
ISBN: 3662047055
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.

Grid Homology for Knots and Links

Grid Homology for Knots and Links PDF Author: Peter S. Ozsváth
Publisher: American Mathematical Soc.
ISBN: 1470417375
Category : Education
Languages : en
Pages : 423

Get Book Here

Book Description
Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.

Cornered Heegaard Floer Homology

Cornered Heegaard Floer Homology PDF Author: Christopher L Douglas
Publisher: American Mathematical Soc.
ISBN: 1470437716
Category : Education
Languages : en
Pages : 124

Get Book Here

Book Description
Bordered Floer homology assigns invariants to 3-manifolds with boundary, such that the Heegaard Floer homology of a closed 3-manifold, split into two pieces, can be recovered as a tensor product of the bordered invariants of the pieces. The authors construct cornered Floer homology invariants of 3-manifolds with codimension-2 corners and prove that the bordered Floer homology of a 3-manifold with boundary, split into two pieces with corners, can be recovered as a tensor product of the cornered invariants of the pieces.

 PDF Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191

Get Book Here

Book Description


Floer Homology, Gauge Theory, and Low-Dimensional Topology

Floer Homology, Gauge Theory, and Low-Dimensional Topology PDF Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821838457
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).

Heegaard-Floer Homology and D-Based Links in Three Manifolds

Heegaard-Floer Homology and D-Based Links in Three Manifolds PDF Author: Lawrence Pierce Roberts
Publisher:
ISBN:
Category :
Languages : en
Pages : 484

Get Book Here

Book Description


Monopoles and Three-Manifolds

Monopoles and Three-Manifolds PDF Author: Peter Kronheimer
Publisher:
ISBN: 9780521880220
Category : Mathematics
Languages : en
Pages : 796

Get Book Here

Book Description
This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten equations. Suitable for beginning graduate students and researchers in the field, this book provides a full discussion of a central part of the study of the topology of manifolds.

Quantum Field Theory and Manifold Invariants

Quantum Field Theory and Manifold Invariants PDF Author: Daniel S. Freed
Publisher: American Mathematical Society, IAS/Park City Mathematics Institute
ISBN: 1470461234
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This volume contains lectures from the Graduate Summer School “Quantum Field Theory and Manifold Invariants” held at Park City Mathematics Institute 2019. The lectures span topics in topology, global analysis, and physics, and they range from introductory to cutting edge. Topics treated include mathematical gauge theory (anti-self-dual equations, Seiberg-Witten equations, Higgs bundles), classical and categorified knot invariants (Khovanov homology, Heegaard Floer homology), instanton Floer homology, invertible topological field theory, BPS states and spectral networks. This collection presents a rich blend of geometry and topology, with some theoretical physics thrown in as well, and so provides a snapshot of a vibrant and fast-moving field. Graduate students with basic preparation in topology and geometry can use this volume to learn advanced background material before being brought to the frontiers of current developments. Seasoned researchers will also benefit from the systematic presentation of exciting new advances by leaders in their fields.