Heat Transfer and Fluid Flow in Biological Processes

Heat Transfer and Fluid Flow in Biological Processes PDF Author: Sid M. Becker
Publisher: Academic Press
ISBN: 0124079008
Category : Science
Languages : en
Pages : 428

Get Book Here

Book Description
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques

Heat Transfer and Fluid Flow in Biological Processes

Heat Transfer and Fluid Flow in Biological Processes PDF Author: Sid M. Becker
Publisher: Academic Press
ISBN: 0124079008
Category : Science
Languages : en
Pages : 428

Get Book Here

Book Description
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques

Nano and Bio Heat Transfer and Fluid Flow

Nano and Bio Heat Transfer and Fluid Flow PDF Author: Majid Ghassemi
Publisher: Academic Press
ISBN: 0128038527
Category : Science
Languages : en
Pages : 162

Get Book Here

Book Description
Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. - Discusses nanoparticle applications in drug delivery - Covers the engineering fundamentals of bio heat transfer and fluid flow - Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems

Biological Process Engineering

Biological Process Engineering PDF Author: Arthur T. Johnson
Publisher: John Wiley & Sons
ISBN: 9780471245476
Category : Technology & Engineering
Languages : en
Pages : 762

Get Book Here

Book Description
A unique, accessible guide to the application of engineering methods to biological systems. Presenting for the first time a practical, design-oriented, interdisciplinary approach to transport phenomena involving biological systems, Biological Process Engineering emphasizes the common aspects of the three main transport processes-fluid flow, heat transfer, and mass transfer. In clear and simple terms, it explores the relevance of these processes to broadly defined biological systems such as the growth of microbes in bioreactors, the leaching of pollutants into groundwater, and the chemistry of food manufacturing. Reaching well beyond standard applications in medicine and the environment to areas of biotechnology, aquaculture, agriculture, and food processing, this book promotes analogical thinking that will lead to creative solutions. While keeping the mathematics to a minimum, it explains principles of effective system modeling and demonstrates a wide variety of problem-solving techniques. Readers will find: * Systems diagrams comparing and contrasting different transport processes * Biological examples for all types of systems, including metabolic pathways, locomotion, reproduction, responses to thermal conditions, and more * Numerous design charts and procedures * An extensive collection of tables of parameter values, not found in any other text. An ideal undergraduate text for biological engineering students taking courses in transport processes, Biological Process Engineering is also an excellent reference for practicing engineers. It introduces the reader to diverse biological phenomena, serves as a stepping-stone to more theoretical topics, and provides important insights into the fast-growing arena of biological engineering.

Heat Transfer and Fluid Flow in Minichannels and Microchannels

Heat Transfer and Fluid Flow in Minichannels and Microchannels PDF Author: Satish Kandlikar
Publisher: Elsevier
ISBN: 9780080445274
Category : Science
Languages : en
Pages : 492

Get Book Here

Book Description
&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.

Modeling of Microscale Transport in Biological Processes

Modeling of Microscale Transport in Biological Processes PDF Author: Sid M. Becker
Publisher: Academic Press
ISBN: 9780128045954
Category : Medical
Languages : en
Pages : 0

Get Book Here

Book Description
Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.

Flow and Heat or Mass Transfer in the Chemical Process Industry

Flow and Heat or Mass Transfer in the Chemical Process Industry PDF Author: Dimitrios V. Papavassiliou
Publisher: MDPI
ISBN: 303897238X
Category : Technology & Engineering
Languages : en
Pages : 215

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Flow and Heat or Mass Transfer in the Chemical Process Industry" that was published in Fluids

Fluid Mechanics, Heat Transfer, and Mass Transfer

Fluid Mechanics, Heat Transfer, and Mass Transfer PDF Author: K. S. Raju
Publisher: John Wiley & Sons
ISBN: 0470922923
Category : Technology & Engineering
Languages : en
Pages : 1422

Get Book Here

Book Description
This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.

Fundamentals of Biomedical Transport Processes

Fundamentals of Biomedical Transport Processes PDF Author: Gerald Miller
Publisher: Springer Nature
ISBN: 3031016459
Category : Technology & Engineering
Languages : en
Pages : 65

Get Book Here

Book Description
Transport processes represent important life-sustaining elements in all humans. These include mass transfer processes, including gas exchange in the lungs, transport across capillaries and alveoli, transport across the kidneys, and transport across cell membranes. These mass transfer processes affect how oxygen and carbon dioxide are exchanged in your bloodstream, how metabolic waste products are removed from your blood, how nutrients are transported to tissues, and how all cells function throughout the body. A discussion of kidney dialysis and gas exchange mechanisms is included. Another element in biomedical transport processes is that of momentum transport and fluid flow. This describes how blood is propelled from the heart and throughout the cardiovascular system, how blood elements affect the body, including gas exchange, infection control, clotting of blood, and blood flow resistance, which affects cardiac work. A discussion of the measurement of the blood resistance to flow (viscosity), blood flow, and pressure is also included. A third element in transport processes in the human body is that of heat transfer, including heat transfer inside the body towards the periphery as well as heat transfer from the body to the environment. A discussion of temperature measurements and body protection in extreme heat conditions is also included. Table of Contents: Biomedical Mass Transport / Biofluid Mechanics and Momentum Transport / Biomedical Heat Transport

Transport Phenomena in Biological Systems

Transport Phenomena in Biological Systems PDF Author: George A. Truskey
Publisher: Prentice Hall
ISBN: 0131569880
Category : Biological systems
Languages : en
Pages : 889

Get Book Here

Book Description
For one-semester, advanced undergraduate/graduate courses in Biotransport Engineering. Presenting engineering fundamentals and biological applications in a unified way, this text provides students with the skills necessary to develop and critically analyze models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.

Advanced Transport Phenomena

Advanced Transport Phenomena PDF Author: L. Gary Leal
Publisher: Cambridge University Press
ISBN: 1139462067
Category : Technology & Engineering
Languages : en
Pages : 7

Get Book Here

Book Description
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.