Author: Audrey Terras
Publisher: Springer Science & Business Media
ISBN: 146147972X
Category : Mathematics
Languages : en
Pages : 430
Book Description
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
Author: Audrey Terras
Publisher: Springer Science & Business Media
ISBN: 146147972X
Category : Mathematics
Languages : en
Pages : 430
Book Description
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Publisher: Springer Science & Business Media
ISBN: 146147972X
Category : Mathematics
Languages : en
Pages : 430
Book Description
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations
Author: Audrey Terras
Publisher: Springer
ISBN: 1493934082
Category : Mathematics
Languages : en
Pages : 500
Book Description
This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Publisher: Springer
ISBN: 1493934082
Category : Mathematics
Languages : en
Pages : 500
Book Description
This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Harmonic Analysis for Engineers and Applied Scientists
Author: Gregory S. Chirikjian
Publisher: Courier Dover Publications
ISBN: 0486795640
Category : Mathematics
Languages : en
Pages : 881
Book Description
Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.
Publisher: Courier Dover Publications
ISBN: 0486795640
Category : Mathematics
Languages : en
Pages : 881
Book Description
Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.
Fourier Series, Fourier Transforms, and Function Spaces
Author: Tim Hsu
Publisher: American Mathematical Society
ISBN: 1470476002
Category : Mathematics
Languages : en
Pages : 370
Book Description
Fourier Series, Fourier Transforms, and Function Spaces is designed as a textbook for a second course or capstone course in analysis for advanced undergraduate or beginning graduate students. By assuming the existence and properties of the Lebesgue integral, this book makes it possible for students who have previously taken only one course in real analysis to learn Fourier analysis in terms of Hilbert spaces, allowing for both a deeper and more elegant approach. This approach also allows junior and senior undergraduates to study topics like PDEs, quantum mechanics, and signal processing in a rigorous manner. Students interested in statistics (time series), machine learning (kernel methods), mathematical physics (quantum mechanics), or electrical engineering (signal processing) will find this book useful. With 400 problems, many of which guide readers in developing key theoretical concepts themselves, this text can also be adapted to self-study or an inquiry-based approach. Finally, of course, this text can also serve as motivation and preparation for students going on to further study in analysis.
Publisher: American Mathematical Society
ISBN: 1470476002
Category : Mathematics
Languages : en
Pages : 370
Book Description
Fourier Series, Fourier Transforms, and Function Spaces is designed as a textbook for a second course or capstone course in analysis for advanced undergraduate or beginning graduate students. By assuming the existence and properties of the Lebesgue integral, this book makes it possible for students who have previously taken only one course in real analysis to learn Fourier analysis in terms of Hilbert spaces, allowing for both a deeper and more elegant approach. This approach also allows junior and senior undergraduates to study topics like PDEs, quantum mechanics, and signal processing in a rigorous manner. Students interested in statistics (time series), machine learning (kernel methods), mathematical physics (quantum mechanics), or electrical engineering (signal processing) will find this book useful. With 400 problems, many of which guide readers in developing key theoretical concepts themselves, this text can also be adapted to self-study or an inquiry-based approach. Finally, of course, this text can also serve as motivation and preparation for students going on to further study in analysis.
Real and Functional Analysis
Author: Vladimir I. Bogachev
Publisher: Springer Nature
ISBN: 3030382192
Category : Mathematics
Languages : en
Pages : 602
Book Description
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
Publisher: Springer Nature
ISBN: 3030382192
Category : Mathematics
Languages : en
Pages : 602
Book Description
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
Handbook of Complex Analysis
Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 1351663062
Category : Mathematics
Languages : en
Pages : 547
Book Description
In spite of being nearly 500 years old, the subject of complex analysis is still today a vital and active part of mathematics. There are important applications in physics, engineering, and other aspects of technology. This Handbook presents contributed chapters by prominent mathematicians, including the new generation of researchers. More than a compilation of recent results, this book offers students an essential stepping-stone to gain an entry into the research life of complex analysis. Classes and seminars play a role in this process. More, though, is needed for further study. This Handbook will play that role. This book is also a reference and a source of inspiration for more seasoned mathematicians—both specialists in complex analysis and others who want to acquaint themselves with current modes of thought. The chapters in this volume are authored by leading experts and gifted expositors. They are carefully crafted presentations of diverse aspects of the field, formulated for a broad and diverse audience. This volume is a touchstone for current ideas in the broadly construed subject area of complex analysis. It should enrich the literature and point in some new directions.
Publisher: CRC Press
ISBN: 1351663062
Category : Mathematics
Languages : en
Pages : 547
Book Description
In spite of being nearly 500 years old, the subject of complex analysis is still today a vital and active part of mathematics. There are important applications in physics, engineering, and other aspects of technology. This Handbook presents contributed chapters by prominent mathematicians, including the new generation of researchers. More than a compilation of recent results, this book offers students an essential stepping-stone to gain an entry into the research life of complex analysis. Classes and seminars play a role in this process. More, though, is needed for further study. This Handbook will play that role. This book is also a reference and a source of inspiration for more seasoned mathematicians—both specialists in complex analysis and others who want to acquaint themselves with current modes of thought. The chapters in this volume are authored by leading experts and gifted expositors. They are carefully crafted presentations of diverse aspects of the field, formulated for a broad and diverse audience. This volume is a touchstone for current ideas in the broadly construed subject area of complex analysis. It should enrich the literature and point in some new directions.
Harmonic Analysis on Symmetric Spaces and Applications I
Author: Audrey Terras
Publisher: Springer Science & Business Media
ISBN: 1461251281
Category : Mathematics
Languages : en
Pages : 353
Book Description
Since its beginnings with Fourier (and as far back as the Babylonian astron omers), harmonic analysis has been developed with the goal of unraveling the mysteries of the physical world of quasars, brain tumors, and so forth, as well as the mysteries of the nonphysical, but no less concrete, world of prime numbers, diophantine equations, and zeta functions. Quoting Courant and Hilbert, in the preface to the first German edition of Methods of Mathematical Physics: "Recent trends and fashions have, however, weakened the connection between mathematics and physics. " Such trends are still in evidence, harmful though they may be. My main motivation in writing these notes has been a desire to counteract this tendency towards specialization and describe appli cations of harmonic analysis in such diverse areas as number theory (which happens to be my specialty), statistics, medicine, geophysics, and quantum physics. I remember being quite surprised to learn that the subject is useful. My graduate eduation was that of the 1960s. The standard mathematics graduate course proceeded from Definition 1. 1. 1 to Corollary 14. 5. 59, with no room in between for applications, motivation, history, or references to related work. My aim has been to write a set of notes for a very different sort of course.
Publisher: Springer Science & Business Media
ISBN: 1461251281
Category : Mathematics
Languages : en
Pages : 353
Book Description
Since its beginnings with Fourier (and as far back as the Babylonian astron omers), harmonic analysis has been developed with the goal of unraveling the mysteries of the physical world of quasars, brain tumors, and so forth, as well as the mysteries of the nonphysical, but no less concrete, world of prime numbers, diophantine equations, and zeta functions. Quoting Courant and Hilbert, in the preface to the first German edition of Methods of Mathematical Physics: "Recent trends and fashions have, however, weakened the connection between mathematics and physics. " Such trends are still in evidence, harmful though they may be. My main motivation in writing these notes has been a desire to counteract this tendency towards specialization and describe appli cations of harmonic analysis in such diverse areas as number theory (which happens to be my specialty), statistics, medicine, geophysics, and quantum physics. I remember being quite surprised to learn that the subject is useful. My graduate eduation was that of the 1960s. The standard mathematics graduate course proceeded from Definition 1. 1. 1 to Corollary 14. 5. 59, with no room in between for applications, motivation, history, or references to related work. My aim has been to write a set of notes for a very different sort of course.
Algorithms as a Basis of Modern Applied Mathematics
Author: Šárka Hošková-Mayerová
Publisher: Springer Nature
ISBN: 3030613348
Category : Technology & Engineering
Languages : en
Pages : 515
Book Description
This book offers a self-contained guide to advanced algorithms and their applications in various fields of science. Gathering contributions by authoritative researchers in the field of mathematics, statistics and computer science, it aims at offering a comprehensive and up-to-date view of algorithms, including the theory behind them, as well as practical considerations, current limitations and solutions. It covers applications in energy management, decision making, computer networks, materials science, mechanics and process optimization. It offers an integrated and timely guide to important algorithms, and represents a valuable reference resource for graduate students and researchers in various fields of applied mathematics, statistics and engineering.
Publisher: Springer Nature
ISBN: 3030613348
Category : Technology & Engineering
Languages : en
Pages : 515
Book Description
This book offers a self-contained guide to advanced algorithms and their applications in various fields of science. Gathering contributions by authoritative researchers in the field of mathematics, statistics and computer science, it aims at offering a comprehensive and up-to-date view of algorithms, including the theory behind them, as well as practical considerations, current limitations and solutions. It covers applications in energy management, decision making, computer networks, materials science, mechanics and process optimization. It offers an integrated and timely guide to important algorithms, and represents a valuable reference resource for graduate students and researchers in various fields of applied mathematics, statistics and engineering.
Abstract Algebra with Applications
Author: Audrey Terras
Publisher: Cambridge University Press
ISBN: 1107164079
Category : Mathematics
Languages : en
Pages : 331
Book Description
This text offers a friendly and concise introduction to abstract algebra, emphasizing its uses in the modern world.
Publisher: Cambridge University Press
ISBN: 1107164079
Category : Mathematics
Languages : en
Pages : 331
Book Description
This text offers a friendly and concise introduction to abstract algebra, emphasizing its uses in the modern world.
Analysis and Geometry of Markov Diffusion Operators
Author: Dominique Bakry
Publisher: Springer Science & Business Media
ISBN: 3319002279
Category : Mathematics
Languages : en
Pages : 555
Book Description
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
Publisher: Springer Science & Business Media
ISBN: 3319002279
Category : Mathematics
Languages : en
Pages : 555
Book Description
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.