Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization PDF Author: Miguel F. Anjos
Publisher: Springer Science & Business Media
ISBN: 1461407699
Category : Business & Economics
Languages : en
Pages : 955

Get Book Here

Book Description
Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization PDF Author: Miguel F. Anjos
Publisher: Springer Science & Business Media
ISBN: 1461407699
Category : Business & Economics
Languages : en
Pages : 955

Get Book Here

Book Description
Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization PDF Author: Jean B Lasserre
Publisher: Springer
ISBN: 9781489978035
Category :
Languages : en
Pages : 974

Get Book Here

Book Description
This book offers the reader a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization and polynomial optimization. It covers theory, algorithms, software and applications.

An Introduction to Polynomial and Semi-Algebraic Optimization

An Introduction to Polynomial and Semi-Algebraic Optimization PDF Author: Jean Bernard Lasserre
Publisher: Cambridge University Press
ISBN: 1316240398
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This is the first comprehensive introduction to the powerful moment approach for solving global optimization problems (and some related problems) described by polynomials (and even semi-algebraic functions). In particular, the author explains how to use relatively recent results from real algebraic geometry to provide a systematic numerical scheme for computing the optimal value and global minimizers. Indeed, among other things, powerful positivity certificates from real algebraic geometry allow one to define an appropriate hierarchy of semidefinite (SOS) relaxations or LP relaxations whose optimal values converge to the global minimum. Several extensions to related optimization problems are also described. Graduate students, engineers and researchers entering the field can use this book to understand, experiment with and master this new approach through the simple worked examples provided.

Sparse Polynomial Optimization: Theory And Practice

Sparse Polynomial Optimization: Theory And Practice PDF Author: Victor Magron
Publisher: World Scientific
ISBN: 1800612966
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.

A Mathematical Approach to Research Problems of Science and Technology

A Mathematical Approach to Research Problems of Science and Technology PDF Author: Ryuei Nishii
Publisher: Springer
ISBN: 4431550607
Category : Technology & Engineering
Languages : en
Pages : 497

Get Book Here

Book Description
This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

Static Analysis

Static Analysis PDF Author: Xavier Rival
Publisher: Springer
ISBN: 3662534134
Category : Computers
Languages : en
Pages : 518

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 23rd International Static Analysis Symposium, SAS 2016, held in Edinburgh, UK, in September 2016. The 21 papers presented in this volume were carefully reviewed and selected from 55 submissions. The contributions cover a variety of multi-disciplinary topics in abstract domains; abstract interpretation; abstract testing; bug detection; data flow analysis; model checking; new applications; program transformation; program verification; security analysis; theoretical frameworks; and type checking.

Approximation Algorithms and Semidefinite Programming

Approximation Algorithms and Semidefinite Programming PDF Author: Bernd Gärtner
Publisher: Springer Science & Business Media
ISBN: 3642220150
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.

Nonlinear Optimization

Nonlinear Optimization PDF Author: H. A. Eiselt
Publisher: Springer Nature
ISBN: 3030194620
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
This book provides a comprehensive introduction to nonlinear programming, featuring a broad range of applications and solution methods in the field of continuous optimization. It begins with a summary of classical results on unconstrained optimization, followed by a wealth of applications from a diverse mix of fields, e.g. location analysis, traffic planning, and water quality management, to name but a few. In turn, the book presents a formal description of optimality conditions, followed by an in-depth discussion of the main solution techniques. Each method is formally described, and then fully solved using a numerical example.

Genericity In Polynomial Optimization

Genericity In Polynomial Optimization PDF Author: Tien Son Pham
Publisher: World Scientific
ISBN: 1786342235
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.

Mathematical Programming for Power Systems Operation

Mathematical Programming for Power Systems Operation PDF Author: Alejandro Garcés
Publisher: John Wiley & Sons
ISBN: 1119747287
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
Explore the theoretical foundations and real-world power system applications of convex programming In Mathematical Programming for Power System Operation with Applications in Python, Professor Alejandro Garces delivers a comprehensive overview of power system operations models with a focus on convex optimization models and their implementation in Python. Divided into two parts, the book begins with a theoretical analysis of convex optimization models before moving on to related applications in power systems operations. The author eschews concepts of topology and functional analysis found in more mathematically oriented books in favor of a more natural approach. Using this perspective, he presents recent applications of convex optimization in power system operations problems. Mathematical Programming for Power System Operation with Applications in Python uses Python and CVXPY as tools to solve power system optimization problems and includes models that can be solved with the presented framework. The book also includes: A thorough introduction to power system operation, including economic and environmental dispatch, optimal power flow, and hosting capacity Comprehensive explorations of the mathematical background of power system operation, including quadratic forms and norms and the basic theory of optimization Practical discussions of convex functions and convex sets, including affine and linear spaces, politopes, balls, and ellipsoids In-depth examinations of convex optimization, including global optimums, and first and second order conditions Perfect for undergraduate students with some knowledge in power systems analysis, generation, or distribution, Mathematical Programming for Power System Operation with Applications in Python is also an ideal resource for graduate students and engineers practicing in the area of power system optimization.