Author: David J. Sheskin
Publisher: CRC Press
ISBN: 1439858047
Category : Education
Languages : en
Pages : 1927
Book Description
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures.New in the Fifth Edition:Substantial updates and new material th
Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition
Author: David J. Sheskin
Publisher: CRC Press
ISBN: 1439858047
Category : Education
Languages : en
Pages : 1927
Book Description
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures.New in the Fifth Edition:Substantial updates and new material th
Publisher: CRC Press
ISBN: 1439858047
Category : Education
Languages : en
Pages : 1927
Book Description
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures.New in the Fifth Edition:Substantial updates and new material th
Handbook of Parametric and Nonparametric Statistical Procedures
Author: David Sheskin
Publisher: CRC Press
ISBN:
Category : Mathematics
Languages : en
Pages : 760
Book Description
This book offers unparalleled coverage of parametric and nonparametric statistical procedures: Detailing nearly 75 statistical procedures, the text shows: - How to select and conduct the appropiate statistical analysis for evaluating data from an empirical study - How to discriminate acceptable from unacceptable research when considering experimental control, and statistical analysis - How to interpret and better understand results of published research across a spectrum of disciplines
Publisher: CRC Press
ISBN:
Category : Mathematics
Languages : en
Pages : 760
Book Description
This book offers unparalleled coverage of parametric and nonparametric statistical procedures: Detailing nearly 75 statistical procedures, the text shows: - How to select and conduct the appropiate statistical analysis for evaluating data from an empirical study - How to discriminate acceptable from unacceptable research when considering experimental control, and statistical analysis - How to interpret and better understand results of published research across a spectrum of disciplines
Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition
Author: David J. Sheskin
Publisher: CRC Press
ISBN: 1000083276
Category : Mathematics
Languages : en
Pages : 1624
Book Description
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures.New in the Fifth Edition:Substantial updates and new material th
Publisher: CRC Press
ISBN: 1000083276
Category : Mathematics
Languages : en
Pages : 1624
Book Description
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures.New in the Fifth Edition:Substantial updates and new material th
Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition
Author: David J. Sheskin
Publisher: Chapman and Hall/CRC
ISBN: 9781439858011
Category : Mathematics
Languages : en
Pages : 0
Book Description
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures. New in the Fifth Edition: Substantial updates and new material throughout New chapters on path analysis, meta-analysis, and structural equation modeling Index numbers and time series analysis applications in business and economics Statistical quality control applications in industry Random- and fixed-effects models for the analysis of variance Broad in scope, the Handbook is intended for individuals involved in a wide spectrum of academic disciplines encompassing the fields of mathematics, the social, biological, and environmental sciences, business, and education. A reference for statistically sophisticated individuals, the Handbook is also accessible to those lacking the theoretical or mathematical background required for understanding subject matter typically documented in statistics reference books.
Publisher: Chapman and Hall/CRC
ISBN: 9781439858011
Category : Mathematics
Languages : en
Pages : 0
Book Description
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures. New in the Fifth Edition: Substantial updates and new material throughout New chapters on path analysis, meta-analysis, and structural equation modeling Index numbers and time series analysis applications in business and economics Statistical quality control applications in industry Random- and fixed-effects models for the analysis of variance Broad in scope, the Handbook is intended for individuals involved in a wide spectrum of academic disciplines encompassing the fields of mathematics, the social, biological, and environmental sciences, business, and education. A reference for statistically sophisticated individuals, the Handbook is also accessible to those lacking the theoretical or mathematical background required for understanding subject matter typically documented in statistics reference books.
Handbook of Parametric and Nonparametric Statistical Procedures
Author: David Sheskin
Publisher: Chapman and Hall/CRC
ISBN:
Category : Mathematics
Languages : en
Pages : 1784
Book Description
With more than 500 pages of new material, the Handbook of Parametric and Nonparametric Statistical Procedures, Fourth Edition carries on the esteemed tradition of the previous editions, providing up-to-date, in-depth coverage of now more than 160 statistical procedures. The book also discusses both theoretical and practical statistical topics, such as experimental design, experimental control, and statistical analysis. Eliminating the need to search across numerous books, this handbook provides you with everything you need to know about parametric and nonparametric statistical procedures. It helps you choose the best test for your data, interpret the results, and better evaluate the research of others.
Publisher: Chapman and Hall/CRC
ISBN:
Category : Mathematics
Languages : en
Pages : 1784
Book Description
With more than 500 pages of new material, the Handbook of Parametric and Nonparametric Statistical Procedures, Fourth Edition carries on the esteemed tradition of the previous editions, providing up-to-date, in-depth coverage of now more than 160 statistical procedures. The book also discusses both theoretical and practical statistical topics, such as experimental design, experimental control, and statistical analysis. Eliminating the need to search across numerous books, this handbook provides you with everything you need to know about parametric and nonparametric statistical procedures. It helps you choose the best test for your data, interpret the results, and better evaluate the research of others.
Statistical Tools for the Comprehensive Practice of Industrial Hygiene and Environmental Health Sciences
Author: David L. Johnson
Publisher: John Wiley & Sons
ISBN: 1119143012
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Reviews and reinforces concepts and techniques typical of a first statistics course with additional techniques useful to the IH/EHS practitioner. Includes both parametric and non-parametric techniques described and illustrated in a worker health and environmental protection practice context Illustrated through numerous examples presented in the context of IH/EHS field practice and research, using the statistical analysis tools available in Excel® wherever possible Emphasizes the application of statistical tools to IH/EHS-type data in order to answer IH/EHS-relevant questions Includes an instructor’s manual that follows in parallel with the textbook, including PowerPoints to help prepare lectures and answers in the text as for the Exercises section of each chapter.
Publisher: John Wiley & Sons
ISBN: 1119143012
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Reviews and reinforces concepts and techniques typical of a first statistics course with additional techniques useful to the IH/EHS practitioner. Includes both parametric and non-parametric techniques described and illustrated in a worker health and environmental protection practice context Illustrated through numerous examples presented in the context of IH/EHS field practice and research, using the statistical analysis tools available in Excel® wherever possible Emphasizes the application of statistical tools to IH/EHS-type data in order to answer IH/EHS-relevant questions Includes an instructor’s manual that follows in parallel with the textbook, including PowerPoints to help prepare lectures and answers in the text as for the Exercises section of each chapter.
The Elements of Inquiry
Author: Peter J. Burke
Publisher: Routledge
ISBN: 1351111051
Category : Psychology
Languages : en
Pages : 358
Book Description
The Elements of Inquiry covers the basic guidelines for graduate students doing an investigation or inquiry project. It distils the rubrics necessary for teaching research methods and completing research projects, and gives the student researcher a list of steps to follow to complete any type of inquiry project – including formal research projects such as doctoral dissertations. It was written to support the work of students in an educational leadership doctoral program, but it will also assist the research efforts of college students at any level in any discipline. The book begins by establishing the underlying philosophical concepts upon which all good research is based, preparing students to get down to the "nuts and bolts" of conducting their own research and evaluating the research of others. Fundamental concepts and rules of research are explained both for producers and consumers of social science and educational research. Numerous practical examples illustrate the steps in the research process presented in the text. There are end-of-chapter exercises for students to apply the concepts discussed in the chapter. Templates for organizing and presenting research provide students with a game plan for success with their research. The book ends with an up-to-date annotated bibliography of beginning and advanced research texts allowing students easy access to books that detail the more specialized research topics. While most research books detail one or more method in depth, this text provides a broad introduction to many techniques and models used in doctoral dissertations, and will be of particular value to those who are consumers of inquiry studies and research reports. Key to the overview provided is the annotated bibliography that leads the reader to the next stage of understanding or doing research.
Publisher: Routledge
ISBN: 1351111051
Category : Psychology
Languages : en
Pages : 358
Book Description
The Elements of Inquiry covers the basic guidelines for graduate students doing an investigation or inquiry project. It distils the rubrics necessary for teaching research methods and completing research projects, and gives the student researcher a list of steps to follow to complete any type of inquiry project – including formal research projects such as doctoral dissertations. It was written to support the work of students in an educational leadership doctoral program, but it will also assist the research efforts of college students at any level in any discipline. The book begins by establishing the underlying philosophical concepts upon which all good research is based, preparing students to get down to the "nuts and bolts" of conducting their own research and evaluating the research of others. Fundamental concepts and rules of research are explained both for producers and consumers of social science and educational research. Numerous practical examples illustrate the steps in the research process presented in the text. There are end-of-chapter exercises for students to apply the concepts discussed in the chapter. Templates for organizing and presenting research provide students with a game plan for success with their research. The book ends with an up-to-date annotated bibliography of beginning and advanced research texts allowing students easy access to books that detail the more specialized research topics. While most research books detail one or more method in depth, this text provides a broad introduction to many techniques and models used in doctoral dissertations, and will be of particular value to those who are consumers of inquiry studies and research reports. Key to the overview provided is the annotated bibliography that leads the reader to the next stage of understanding or doing research.
Model-Based Hypothesis Testing in Biomedicine
Author: Rikard Johansson
Publisher: Linköping University Electronic Press
ISBN: 9176854574
Category :
Languages : en
Pages : 116
Book Description
The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950?talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.
Publisher: Linköping University Electronic Press
ISBN: 9176854574
Category :
Languages : en
Pages : 116
Book Description
The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950?talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.
Biomass Volume Estimation and Valorization for Energy
Author: Jaya Shankar Tumuluru
Publisher: BoD – Books on Demand
ISBN: 9535129376
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
This book is the outcome of contributions by many experts in the field from different disciplines, various backgrounds, and diverse expertise. This book provides information on biomass volume calculation methods and biomass valorization for energy production. The chapters presented in this book include original research and review articles. I hope the research presented in this book will help to advance the use of biomass for bioenergy production and valorization. The key features of the book are: Providing information on biomass volume estimation using direct, nondestructive and remote sensing methods Biomass valorization for energy using thermochemical (gasification and pyrolysis) and biochemical (fermentation) conversion processes.
Publisher: BoD – Books on Demand
ISBN: 9535129376
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
This book is the outcome of contributions by many experts in the field from different disciplines, various backgrounds, and diverse expertise. This book provides information on biomass volume calculation methods and biomass valorization for energy production. The chapters presented in this book include original research and review articles. I hope the research presented in this book will help to advance the use of biomass for bioenergy production and valorization. The key features of the book are: Providing information on biomass volume estimation using direct, nondestructive and remote sensing methods Biomass valorization for energy using thermochemical (gasification and pyrolysis) and biochemical (fermentation) conversion processes.
Intelligent Data Engineering and Automated Learning – IDEAL 2020
Author: Cesar Analide
Publisher: Springer Nature
ISBN: 3030623653
Category : Computers
Languages : en
Pages : 633
Book Description
This two-volume set of LNCS 12489 and 12490 constitutes the thoroughly refereed conference proceedings of the 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, held in Guimaraes, Portugal, in November 2020.* The 93 papers presented were carefully reviewed and selected from 134 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2020 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspiredmodels, agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. * The conference was held virtually due to the COVID-19 pandemic.
Publisher: Springer Nature
ISBN: 3030623653
Category : Computers
Languages : en
Pages : 633
Book Description
This two-volume set of LNCS 12489 and 12490 constitutes the thoroughly refereed conference proceedings of the 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, held in Guimaraes, Portugal, in November 2020.* The 93 papers presented were carefully reviewed and selected from 134 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2020 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspiredmodels, agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. * The conference was held virtually due to the COVID-19 pandemic.