Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence

Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence PDF Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 9813271248
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
This is a comprehensive book on the theories of artificial intelligence with an emphasis on their applications. It combines fuzzy logic and neural networks, as well as hidden Markov models and genetic algorithm, describes advancements and applications of these machine learning techniques and describes the problem of causality. This book should serves as a useful reference for practitioners in artificial intelligence.

Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence

Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence PDF Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 9813271248
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
This is a comprehensive book on the theories of artificial intelligence with an emphasis on their applications. It combines fuzzy logic and neural networks, as well as hidden Markov models and genetic algorithm, describes advancements and applications of these machine learning techniques and describes the problem of causality. This book should serves as a useful reference for practitioners in artificial intelligence.

Handbook of Research on Emerging Trends and Applications of Machine Learning

Handbook of Research on Emerging Trends and Applications of Machine Learning PDF Author: Solanki, Arun
Publisher: IGI Global
ISBN: 1522596453
Category : Computers
Languages : en
Pages : 674

Get Book Here

Book Description
As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.

Probabilistic Machine Learning

Probabilistic Machine Learning PDF Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858

Get Book Here

Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Handbook of Research on Applications and Implementations of Machine Learning Techniques

Handbook of Research on Applications and Implementations of Machine Learning Techniques PDF Author: Sathiyamoorthi Velayutham
Publisher: IGI Global, Engineering Science Reference
ISBN: 9781522599029
Category : Machine learning
Languages : en
Pages : 0

Get Book Here

Book Description
"This book examines the practical applications and implementation of various machine learning techniques in various fields such as agriculture, medical, image processing, and networking"--

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry PDF Author: Chkoniya, Valentina
Publisher: IGI Global
ISBN: 1799869865
Category : Computers
Languages : en
Pages : 653

Get Book Here

Book Description
The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.

AI and Machine Learning for Coders

AI and Machine Learning for Coders PDF Author: Laurence Moroney
Publisher: O'Reilly Media
ISBN: 1492078166
Category : Computers
Languages : en
Pages : 393

Get Book Here

Book Description
If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

Handbook of Research on Artificial Intelligence Techniques and Algorithms

Handbook of Research on Artificial Intelligence Techniques and Algorithms PDF Author: Vasant, Pandian
Publisher: IGI Global
ISBN: 1466672595
Category : Computers
Languages : en
Pages : 913

Get Book Here

Book Description
For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.

Machine Learning: Concepts, Methodologies, Tools and Applications

Machine Learning: Concepts, Methodologies, Tools and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1609608194
Category : Computers
Languages : en
Pages : 2174

Get Book Here

Book Description
"This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe

Revolutionizing Education in the Age of AI and Machine Learning

Revolutionizing Education in the Age of AI and Machine Learning PDF Author: Habib, Maki K.
Publisher: IGI Global
ISBN: 1522577947
Category : Education
Languages : en
Pages : 278

Get Book Here

Book Description
Artificial Intelligence (AI) serves as a catalyst for transformation in the field of digital teaching and learning by introducing novel solutions to revolutionize all dimensions of the educational process, leading to individualized learning experiences, teachers playing a greater role as mentors, and the automation of all administrative processes linked to education. AI and machine learning are already contributing to and are expected to improve the quality of the educational process by providing advantages such as personalized and interactive tutoring with the ability to adjust the content and the learning pace of each individual student while assessing their performance and providing feedback. These shifts in the educational paradigm have a profound impact on the quality and the way we live, interact with each other, and define our values. Thus, there is a need for an earnest inquiry into the cultural repercussions of this phenomenon that extends beyond superficial analyses of AI-based applications in education. Revolutionizing Education in the Age of AI and Machine Learning addresses the need for a scholarly exploration of the cultural and social impacts of the rapid expansion of artificial intelligence in the field of education including potential consequences these impacts could have on culture, social relations, and values. The content within this publication covers such topics as AI and tutoring, role of teachers, physical education and sports, interactive E-learning and virtual laboratories, adaptive curricula development, support critical thinking, and augmented intelligence and it is designed for educators, curriculum developers, instructional designers, educational software developers, education consultants, academicians, administrators, researchers, and professionals.