Handbook of Formal Optimization

Handbook of Formal Optimization PDF Author: Anand J. Kulkarni
Publisher: Springer Nature
ISBN: 9819738202
Category :
Languages : en
Pages : 1406

Get Book Here

Book Description

Handbook of Formal Optimization

Handbook of Formal Optimization PDF Author: Anand J. Kulkarni
Publisher: Springer Nature
ISBN: 9819738202
Category :
Languages : en
Pages : 1406

Get Book Here

Book Description


Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Handbook of Graph Theory, Combinatorial Optimization, and Algorithms PDF Author: Krishnaiyan "KT" Thulasiraman
Publisher: CRC Press
ISBN: 1420011073
Category : Computers
Languages : en
Pages : 1217

Get Book Here

Book Description
The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and c

Applied Optimization

Applied Optimization PDF Author: Ross Baldick
Publisher: Cambridge University Press
ISBN: 1107394082
Category : Technology & Engineering
Languages : en
Pages : 859

Get Book Here

Book Description
The starting point in the formulation of any numerical problem is to take an intuitive idea about the problem in question and to translate it into precise mathematical language. This book provides step-by-step descriptions of how to formulate numerical problems and develops techniques for solving them. A number of engineering case studies motivate the development of efficient algorithms that involve, in some cases, transformation of the problem from its initial formulation into a more tractable form. Five general problem classes are considered: linear systems of equations, non-linear systems of equations, unconstrained optimization, equality-constrained optimization and inequality-constrained optimization. The book contains many worked examples and homework exercises and is suitable for students of engineering or operations research taking courses in optimization. Supplementary material including solutions, lecture slides and appendices are available online at www.cambridge.org/9780521855648.

Handbook of Formal Optimization

Handbook of Formal Optimization PDF Author: Anand J. Kulkarni
Publisher: Springer
ISBN: 9789819738199
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
The formal optimization handbook is a comprehensive guide that covers a wide range of subjects. It includes a literature review, a mathematical formulation of optimization methods, flowcharts and pseudocodes, illustrations, problems and applications, results and critical discussions, and much more. The book covers a vast array of formal optimization fields, including mathematical and Bayesian optimization, neural networks and deep learning, genetic algorithms and their applications, hybrid optimization methods, combinatorial optimization, constraint handling in optimization methods, and swarm-based optimization. This handbook is an excellent reference for experts and non-specialists alike, as it provides stimulating material. The book also covers research trends, challenges, and prospective topics, making it a valuable resource for those looking to expand their knowledge in this field.

Algorithms for Optimization

Algorithms for Optimization PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262039427
Category : Computers
Languages : en
Pages : 521

Get Book Here

Book Description
A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization PDF Author: Laurence A. Wolsey
Publisher: John Wiley & Sons
ISBN: 1118626869
Category : Mathematics
Languages : en
Pages : 782

Get Book Here

Book Description
Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION "This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list."-Optima "A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such formulations, as well as for understanding the structure of and solving the resulting integer programming problems."-Computing Reviews "[This book] can serve as a basis for various graduate courses on discrete optimization as well as a reference book for researchers and practitioners."-Mathematical Reviews "This comprehensive and wide-ranging book will undoubtedly become a standard reference book for all those in the field of combinatorial optimization."-Bulletin of the London Mathematical Society "This text should be required reading for anybody who intends to do research in this area or even just to keep abreast of developments."-Times Higher Education Supplement, London Also of interest . . . INTEGER PROGRAMMING Laurence A. Wolsey Comprehensive and self-contained, this intermediate-level guide to integer programming provides readers with clear, up-to-date explanations on why some problems are difficult to solve, how techniques can be reformulated to give better results, and how mixed integer programming systems can be used more effectively. 1998 (0-471-28366-5) 260 pp.

Iterative Methods in Combinatorial Optimization

Iterative Methods in Combinatorial Optimization PDF Author: Lap Chi Lau
Publisher: Cambridge University Press
ISBN: 1139499394
Category : Computers
Languages : en
Pages : 255

Get Book Here

Book Description
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.

A Gentle Introduction to Optimization

A Gentle Introduction to Optimization PDF Author: B. Guenin
Publisher: Cambridge University Press
ISBN: 1139992996
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
Optimization is an essential technique for solving problems in areas as diverse as accounting, computer science and engineering. Assuming only basic linear algebra and with a clear focus on the fundamental concepts, this textbook is the perfect starting point for first- and second-year undergraduate students from a wide range of backgrounds and with varying levels of ability. Modern, real-world examples motivate the theory throughout. The authors keep the text as concise and focused as possible, with more advanced material treated separately or in starred exercises. Chapters are self-contained so that instructors and students can adapt the material to suit their own needs and a wide selection of over 140 exercises gives readers the opportunity to try out the skills they gain in each section. Solutions are available for instructors. The book also provides suggestions for further reading to help students take the next step to more advanced material.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Ant Colony Optimization

Ant Colony Optimization PDF Author: Marco Dorigo
Publisher: MIT Press
ISBN: 9780262042192
Category : Computers
Languages : en
Pages : 324

Get Book Here

Book Description
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.