Author: Kenneth H. Rosen
Publisher: CRC Press
ISBN: 135164405X
Category : Mathematics
Languages : en
Pages : 1611
Book Description
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Handbook of Discrete and Combinatorial Mathematics
Author: Kenneth H. Rosen
Publisher: CRC Press
ISBN: 135164405X
Category : Mathematics
Languages : en
Pages : 1611
Book Description
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Publisher: CRC Press
ISBN: 135164405X
Category : Mathematics
Languages : en
Pages : 1611
Book Description
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Handbook of Combinatorial Designs
Author: C. J. Colbourn
Publisher: Chapman and Hall/CRC
ISBN: 9781584885061
Category : Mathematics
Languages : en
Pages : 1016
Book Description
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.
Publisher: Chapman and Hall/CRC
ISBN: 9781584885061
Category : Mathematics
Languages : en
Pages : 1016
Book Description
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.
Handbook of Discrete and Computational Geometry
Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354
Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354
Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Handbook of Enumerative Combinatorics
Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482220865
Category : Mathematics
Languages : en
Pages : 1073
Book Description
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he
Publisher: CRC Press
ISBN: 1482220865
Category : Mathematics
Languages : en
Pages : 1073
Book Description
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he
Handbook of Discrete and Computational Geometry
Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 9780849385247
Category : Mathematics
Languages : en
Pages : 1008
Book Description
Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identified, applications of the results of this work are being used in an increasing number of widely differing areas, from computer graphics and linear programming to manufacturing and robotics. The authors have answered the need for a comprehensive handbook for workers in these and related fields, and for other users of the body of results. While much information can be found on discrete and computational geometry, it is scattered among many sources, and individual books and articles are often narrowly focused. Handbook of Discrete and Computational Geometry brings together, for the first time, all of the major results in both these fields into one volume. Thousands of results - theorems, algorithms, and tables - throughout the volume definitively cover the field, while numerous applications from many different fields demonstrate practical usage. The material is presented clearly enough to assist the novice, but in enough depth to appeal to the specialist. Every technical term is clearly defined in an easy-to-use glossary. Over 200 figures illustrate the concepts presented and provide supporting examples. Information on current geometric software - what it does, how efficiently it does it, and where to find it - is also included.
Publisher: CRC Press
ISBN: 9780849385247
Category : Mathematics
Languages : en
Pages : 1008
Book Description
Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identified, applications of the results of this work are being used in an increasing number of widely differing areas, from computer graphics and linear programming to manufacturing and robotics. The authors have answered the need for a comprehensive handbook for workers in these and related fields, and for other users of the body of results. While much information can be found on discrete and computational geometry, it is scattered among many sources, and individual books and articles are often narrowly focused. Handbook of Discrete and Computational Geometry brings together, for the first time, all of the major results in both these fields into one volume. Thousands of results - theorems, algorithms, and tables - throughout the volume definitively cover the field, while numerous applications from many different fields demonstrate practical usage. The material is presented clearly enough to assist the novice, but in enough depth to appeal to the specialist. Every technical term is clearly defined in an easy-to-use glossary. Over 200 figures illustrate the concepts presented and provide supporting examples. Information on current geometric software - what it does, how efficiently it does it, and where to find it - is also included.
Handbook of Discrete and Combinatorial Mathematics
Author: Kenneth H. Rosen
Publisher: CRC Press
ISBN: 1584887818
Category : Mathematics
Languages : en
Pages : 1612
Book Description
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Publisher: CRC Press
ISBN: 1584887818
Category : Mathematics
Languages : en
Pages : 1612
Book Description
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Handbook of Combinatorics
Author: R.L. Graham
Publisher: Elsevier
ISBN: 044488002X
Category : Business & Economics
Languages : en
Pages : 1283
Book Description
Publisher: Elsevier
ISBN: 044488002X
Category : Business & Economics
Languages : en
Pages : 1283
Book Description
Handbook of Linear Algebra, Second Edition
Author: Leslie Hogben
Publisher: CRC Press
ISBN: 1466507284
Category : Mathematics
Languages : en
Pages : 1906
Book Description
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.
Publisher: CRC Press
ISBN: 1466507284
Category : Mathematics
Languages : en
Pages : 1906
Book Description
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.
Combinatorial Methods with Computer Applications
Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 1584887443
Category : Computers
Languages : en
Pages : 664
Book Description
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Publisher: CRC Press
ISBN: 1584887443
Category : Computers
Languages : en
Pages : 664
Book Description
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Discrete and Computational Geometry
Author: Satyan L. Devadoss
Publisher: Princeton University Press
ISBN: 1400838983
Category : Mathematics
Languages : en
Pages : 270
Book Description
An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)
Publisher: Princeton University Press
ISBN: 1400838983
Category : Mathematics
Languages : en
Pages : 270
Book Description
An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)