Author: Anthony Bedford
Publisher: Springer Nature
ISBN: 3030903060
Category : Science
Languages : en
Pages : 114
Book Description
This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces.
Hamilton’s Principle in Continuum Mechanics
Author: Anthony Bedford
Publisher: Springer Nature
ISBN: 3030903060
Category : Science
Languages : en
Pages : 114
Book Description
This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces.
Publisher: Springer Nature
ISBN: 3030903060
Category : Science
Languages : en
Pages : 114
Book Description
This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces.
Variational Principles of Continuum Mechanics
Author: Victor Berdichevsky
Publisher: Springer Science & Business Media
ISBN: 354088467X
Category : Science
Languages : en
Pages : 590
Book Description
Thereareabout500booksonvariationalprinciples. Theyareconcernedmostlywith the mathematical aspects of the topic. The major goal of this book is to discuss the physical origin of the variational principles and the intrinsic interrelations between them. For example, the Gibbs principles appear not as the rst principles of the theory of thermodynamic equilibrium but as a consequence of the Einstein formula for thermodynamic uctuations. The mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for direct study of variational problems. Thebookisacompletelyrewrittenversionoftheauthor’smonographVariational Principles of Continuum Mechanics which appeared in Russian in 1983. I have been postponing the English translation because I wished to include the variational pr- ciples of irreversible processes in the new edition. Reaching an understanding of this subject took longer than I expected. In its nal form, this book covers all aspects of the story. The part concerned with irreversible processes is tiny, but it determines the accents put on all the results presented. The other new issues included in the book are: entropy of microstructure, variational principles of vortex line dynamics, va- ational principles and integration in functional spaces, some stochastic variational problems, variational principle for probability densities of local elds in composites with random structure, variational theory of turbulence; these topics have not been covered previously in monographic literature.
Publisher: Springer Science & Business Media
ISBN: 354088467X
Category : Science
Languages : en
Pages : 590
Book Description
Thereareabout500booksonvariationalprinciples. Theyareconcernedmostlywith the mathematical aspects of the topic. The major goal of this book is to discuss the physical origin of the variational principles and the intrinsic interrelations between them. For example, the Gibbs principles appear not as the rst principles of the theory of thermodynamic equilibrium but as a consequence of the Einstein formula for thermodynamic uctuations. The mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for direct study of variational problems. Thebookisacompletelyrewrittenversionoftheauthor’smonographVariational Principles of Continuum Mechanics which appeared in Russian in 1983. I have been postponing the English translation because I wished to include the variational pr- ciples of irreversible processes in the new edition. Reaching an understanding of this subject took longer than I expected. In its nal form, this book covers all aspects of the story. The part concerned with irreversible processes is tiny, but it determines the accents put on all the results presented. The other new issues included in the book are: entropy of microstructure, variational principles of vortex line dynamics, va- ational principles and integration in functional spaces, some stochastic variational problems, variational principle for probability densities of local elds in composites with random structure, variational theory of turbulence; these topics have not been covered previously in monographic literature.
Hamilton's principle in continuum mechanics
Author: A. Bedford
Publisher:
ISBN:
Category : Continuum mechanics
Languages : en
Pages : 101
Book Description
Publisher:
ISBN:
Category : Continuum mechanics
Languages : en
Pages : 101
Book Description
A Student's Guide to Lagrangians and Hamiltonians
Author: Patrick Hamill
Publisher: Cambridge University Press
ISBN: 1107042887
Category : Mathematics
Languages : en
Pages : 185
Book Description
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.
Publisher: Cambridge University Press
ISBN: 1107042887
Category : Mathematics
Languages : en
Pages : 185
Book Description
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.
An Introduction to Continuum Mechanics
Author: J. N. Reddy
Publisher: Cambridge University Press
ISBN: 1107025435
Category : Mathematics
Languages : en
Pages : 479
Book Description
This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.
Publisher: Cambridge University Press
ISBN: 1107025435
Category : Mathematics
Languages : en
Pages : 479
Book Description
This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.
Fundamentals of Continuum Mechanics
Author: John W. Rudnicki
Publisher: John Wiley & Sons
ISBN: 1118927672
Category : Science
Languages : en
Pages : 229
Book Description
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering
Publisher: John Wiley & Sons
ISBN: 1118927672
Category : Science
Languages : en
Pages : 229
Book Description
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering
Variational Principles in Classical Mechanics
Author: Douglas Cline
Publisher:
ISBN: 9780998837277
Category :
Languages : en
Pages :
Book Description
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.
Publisher:
ISBN: 9780998837277
Category :
Languages : en
Pages :
Book Description
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.
Solved Problems in Lagrangian and Hamiltonian Mechanics
Author: Claude Gignoux
Publisher: Springer Science & Business Media
ISBN: 9048123933
Category : Science
Languages : en
Pages : 464
Book Description
The aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.
Publisher: Springer Science & Business Media
ISBN: 9048123933
Category : Science
Languages : en
Pages : 464
Book Description
The aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.
Classical Mechanics: Lecture Notes
Author: Helmut Haberzettl
Publisher: World Scientific
ISBN: 9811238294
Category : Science
Languages : en
Pages : 384
Book Description
This textbook provides lecture materials of a comprehensive course in Classical Mechanics developed by the author over many years with input from students and colleagues alike. The richly illustrated book covers all major aspects of mechanics starting from the traditional Newtonian perspective, over Lagrangian mechanics, variational principles and Hamiltonian mechanics, rigid-body, and continuum mechanics, all the way to deterministic chaos and point-particle mechanics in special relativity. Derivation steps are worked out in detail, illustrated by examples, with ample explanations.Developed by a classroom practitioner, the book provides a comprehensive overview of classical mechanics with judicious material selections that can be covered in a one-semester course thus streamlining the instructor's task of choosing materials for their course. The usefulness for instructors notwithstanding, the primary aim of the book is to help students in their understanding, with detailed derivations and explanations, and provide focused guidance for their studies by repeatedly emphasizing how various topics are tied together by common physics principles.
Publisher: World Scientific
ISBN: 9811238294
Category : Science
Languages : en
Pages : 384
Book Description
This textbook provides lecture materials of a comprehensive course in Classical Mechanics developed by the author over many years with input from students and colleagues alike. The richly illustrated book covers all major aspects of mechanics starting from the traditional Newtonian perspective, over Lagrangian mechanics, variational principles and Hamiltonian mechanics, rigid-body, and continuum mechanics, all the way to deterministic chaos and point-particle mechanics in special relativity. Derivation steps are worked out in detail, illustrated by examples, with ample explanations.Developed by a classroom practitioner, the book provides a comprehensive overview of classical mechanics with judicious material selections that can be covered in a one-semester course thus streamlining the instructor's task of choosing materials for their course. The usefulness for instructors notwithstanding, the primary aim of the book is to help students in their understanding, with detailed derivations and explanations, and provide focused guidance for their studies by repeatedly emphasizing how various topics are tied together by common physics principles.
Energy Principles and Variational Methods in Applied Mechanics
Author: J. N. Reddy
Publisher: John Wiley & Sons
ISBN: 1119087392
Category : Technology & Engineering
Languages : en
Pages : 1069
Book Description
A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.
Publisher: John Wiley & Sons
ISBN: 1119087392
Category : Technology & Engineering
Languages : en
Pages : 1069
Book Description
A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.