Author: Yves Achdou
Publisher: Springer
ISBN: 3642364330
Category : Mathematics
Languages : en
Pages : 316
Book Description
These Lecture Notes contain the material relative to the courses given at the CIME summer school held in Cetraro, Italy from August 29 to September 3, 2011. The topic was "Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications". The courses dealt mostly with the following subjects: first order and second order Hamilton-Jacobi-Bellman equations, properties of viscosity solutions, asymptotic behaviors, mean field games, approximation and numerical methods, idempotent analysis. The content of the courses ranged from an introduction to viscosity solutions to quite advanced topics, at the cutting edge of research in the field. We believe that they opened perspectives on new and delicate issues. These lecture notes contain four contributions by Yves Achdou (Finite Difference Methods for Mean Field Games), Guy Barles (An Introduction to the Theory of Viscosity Solutions for First-order Hamilton-Jacobi Equations and Applications), Hitoshi Ishii (A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations) and Grigory Litvinov (Idempotent/Tropical Analysis, the Hamilton-Jacobi and Bellman Equations).
Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications
Author: Yves Achdou
Publisher: Springer
ISBN: 3642364330
Category : Mathematics
Languages : en
Pages : 316
Book Description
These Lecture Notes contain the material relative to the courses given at the CIME summer school held in Cetraro, Italy from August 29 to September 3, 2011. The topic was "Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications". The courses dealt mostly with the following subjects: first order and second order Hamilton-Jacobi-Bellman equations, properties of viscosity solutions, asymptotic behaviors, mean field games, approximation and numerical methods, idempotent analysis. The content of the courses ranged from an introduction to viscosity solutions to quite advanced topics, at the cutting edge of research in the field. We believe that they opened perspectives on new and delicate issues. These lecture notes contain four contributions by Yves Achdou (Finite Difference Methods for Mean Field Games), Guy Barles (An Introduction to the Theory of Viscosity Solutions for First-order Hamilton-Jacobi Equations and Applications), Hitoshi Ishii (A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations) and Grigory Litvinov (Idempotent/Tropical Analysis, the Hamilton-Jacobi and Bellman Equations).
Publisher: Springer
ISBN: 3642364330
Category : Mathematics
Languages : en
Pages : 316
Book Description
These Lecture Notes contain the material relative to the courses given at the CIME summer school held in Cetraro, Italy from August 29 to September 3, 2011. The topic was "Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications". The courses dealt mostly with the following subjects: first order and second order Hamilton-Jacobi-Bellman equations, properties of viscosity solutions, asymptotic behaviors, mean field games, approximation and numerical methods, idempotent analysis. The content of the courses ranged from an introduction to viscosity solutions to quite advanced topics, at the cutting edge of research in the field. We believe that they opened perspectives on new and delicate issues. These lecture notes contain four contributions by Yves Achdou (Finite Difference Methods for Mean Field Games), Guy Barles (An Introduction to the Theory of Viscosity Solutions for First-order Hamilton-Jacobi Equations and Applications), Hitoshi Ishii (A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations) and Grigory Litvinov (Idempotent/Tropical Analysis, the Hamilton-Jacobi and Bellman Equations).
Hamilton-Jacobi-Bellman Equations
Author: Dante Kalise
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110542714
Category : Mathematics
Languages : en
Pages : 245
Book Description
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110542714
Category : Mathematics
Languages : en
Pages : 245
Book Description
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme
Numerical Methods for Viscosity Solutions and Applications
Author: Maurizio Falcone
Publisher: World Scientific
ISBN: 9789812799807
Category : Mathematics
Languages : en
Pages : 256
Book Description
Geometrical optics and viscosity solutions / A.-P. Blanc, G. T. Kossioris and G. N. Makrakis -- Computation of vorticity evolution for a cylindrical Type-II superconductor subject to parallel and transverse applied magnetic fields / A. Briggs ... [et al.] -- A characterization of the value function for a class of degenerate control problems / F. Camilli -- Some microstructures in three dimensions / M. Chipot and V. Lecuyer -- Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow / K. Deckelnick and G. Dziuk -- Optimal discretization steps in semi-lagrangian approximation of first-order PDEs / M. Falcone, R. Ferretti and T. Manfroni -- Convergence past singularities to the forced mean curvature flow for a modified reaction-diffusion approach / F. Fierro -- The viscosity-duality solutions approach to geometric pptics for the Helmholtz equation / L. Gosse and F. James -- Adaptive grid generation for evolutive Hamilton-Jacobi-Bellman equations / L. Grune -- Solution and application of anisotropic curvature driven evolution of curves (and surfaces) / K. Mikula -- An adaptive scheme on unstructured grids for the shape-from-shading problem / M. Sagona and A. Seghini -- On a posteriori error estimation for constant obstacle problems / A. Veeser.
Publisher: World Scientific
ISBN: 9789812799807
Category : Mathematics
Languages : en
Pages : 256
Book Description
Geometrical optics and viscosity solutions / A.-P. Blanc, G. T. Kossioris and G. N. Makrakis -- Computation of vorticity evolution for a cylindrical Type-II superconductor subject to parallel and transverse applied magnetic fields / A. Briggs ... [et al.] -- A characterization of the value function for a class of degenerate control problems / F. Camilli -- Some microstructures in three dimensions / M. Chipot and V. Lecuyer -- Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow / K. Deckelnick and G. Dziuk -- Optimal discretization steps in semi-lagrangian approximation of first-order PDEs / M. Falcone, R. Ferretti and T. Manfroni -- Convergence past singularities to the forced mean curvature flow for a modified reaction-diffusion approach / F. Fierro -- The viscosity-duality solutions approach to geometric pptics for the Helmholtz equation / L. Gosse and F. James -- Adaptive grid generation for evolutive Hamilton-Jacobi-Bellman equations / L. Grune -- Solution and application of anisotropic curvature driven evolution of curves (and surfaces) / K. Mikula -- An adaptive scheme on unstructured grids for the shape-from-shading problem / M. Sagona and A. Seghini -- On a posteriori error estimation for constant obstacle problems / A. Veeser.
Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations
Author: Maurizio Falcone
Publisher: SIAM
ISBN: 161197304X
Category : Mathematics
Languages : en
Pages : 331
Book Description
This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.
Publisher: SIAM
ISBN: 161197304X
Category : Mathematics
Languages : en
Pages : 331
Book Description
This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.
Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 0817647554
Category : Science
Languages : en
Pages : 588
Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
Publisher: Springer Science & Business Media
ISBN: 0817647554
Category : Science
Languages : en
Pages : 588
Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
Stochastic and Differential Games
Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 9780817640293
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
Publisher: Springer Science & Business Media
ISBN: 9780817640293
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
Fully Nonlinear Elliptic Equations
Author: Luis A. Caffarelli
Publisher: American Mathematical Soc.
ISBN: 0821804375
Category : Mathematics
Languages : en
Pages : 114
Book Description
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Publisher: American Mathematical Soc.
ISBN: 0821804375
Category : Mathematics
Languages : en
Pages : 114
Book Description
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Controlled Markov Processes and Viscosity Solutions
Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
ISBN: 0387310711
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
Publisher: Springer Science & Business Media
ISBN: 0387310711
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
A First Course in the Numerical Analysis of Differential Equations
Author: A. Iserles
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry