Hadamard Products of Projective Varieties

Hadamard Products of Projective Varieties PDF Author: Cristiano Bocci
Publisher: Springer Nature
ISBN: 3031542630
Category :
Languages : en
Pages : 252

Get Book Here

Book Description

Hadamard Products of Projective Varieties

Hadamard Products of Projective Varieties PDF Author: Cristiano Bocci
Publisher: Springer Nature
ISBN: 3031542630
Category :
Languages : en
Pages : 252

Get Book Here

Book Description


Combinatorial Algebraic Geometry

Combinatorial Algebraic Geometry PDF Author: Gregory G. Smith
Publisher: Springer
ISBN: 1493974866
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.

Algebraic Methods in Statistics and Probability II

Algebraic Methods in Statistics and Probability II PDF Author: Marlos A. G. Viana
Publisher: American Mathematical Soc.
ISBN: 0821848917
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
A decade after the publication of Contemporary Mathematics Vol. 287, the present volume demonstrates the consolidation of important areas, such as algebraic statistics, computational commutative algebra, and deeper aspects of graphical models. --

Computational Commutative Algebra 2

Computational Commutative Algebra 2 PDF Author: Martin Kreuzer
Publisher: Springer Science & Business Media
ISBN: 3540282963
Category : Mathematics
Languages : en
Pages : 592

Get Book Here

Book Description
"The second volume of the authors’ ‘Computational commutative algebra’...covers on its 586 pages a wealth of interesting material with several unexpected applications. ... an encyclopedia on computational commutative algebra, a source for lectures on the subject as well as an inspiration for seminars. The text is recommended for all those who want to learn and enjoy an algebraic tool that becomes more and more relevant to different fields of applications." --ZENTRALBLATT MATH

String-Math 2011

String-Math 2011 PDF Author: Jonathan Block
Publisher: American Mathematical Soc.
ISBN: 0821872958
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
The nature of interactions between mathematicians and physicists has been thoroughly transformed in recent years. String theory and quantum field theory have contributed a series of profound ideas that gave rise to entirely new mathematical fields and revitalized older ones. The influence flows in both directions, with mathematical techniques and ideas contributing crucially to major advances in string theory. A large and rapidly growing number of both mathematicians and physicists are working at the string-theoretic interface between the two academic fields. The String-Math conference series aims to bring together leading mathematicians and mathematically minded physicists working in this interface. This volume contains the proceedings of the inaugural conference in this series, String-Math 2011, which was held June 6-11, 2011, at the University of Pennsylvania.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 804

Get Book Here

Book Description


An Introduction to Algebraic Statistics with Tensors

An Introduction to Algebraic Statistics with Tensors PDF Author: Cristiano Bocci
Publisher: Springer Nature
ISBN: 3030246248
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This book provides an introduction to various aspects of Algebraic Statistics with the principal aim of supporting Master’s and PhD students who wish to explore the algebraic point of view regarding recent developments in Statistics. The focus is on the background needed to explore the connections among discrete random variables. The main objects that encode these relations are multilinear matrices, i.e., tensors. The book aims to settle the basis of the correspondence between properties of tensors and their translation in Algebraic Geometry. It is divided into three parts, on Algebraic Statistics, Multilinear Algebra, and Algebraic Geometry. The primary purpose is to describe a bridge between the three theories, so that results and problems in one theory find a natural translation to the others. This task requires, from the statistical point of view, a rather unusual, but algebraically natural, presentation of random variables and their main classical features. The third part of the book can be considered as a short, almost self-contained, introduction to the basic concepts of algebraic varieties, which are part of the fundamental background for all who work in Algebraic Statistics.

Abstracts of Papers Presented to the American Mathematical Society

Abstracts of Papers Presented to the American Mathematical Society PDF Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description


Heights in Diophantine Geometry

Heights in Diophantine Geometry PDF Author: Enrico Bombieri
Publisher: Cambridge University Press
ISBN: 9780521712293
Category : Mathematics
Languages : en
Pages : 676

Get Book Here

Book Description
This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.

An Introduction to Incidence Geometry

An Introduction to Incidence Geometry PDF Author: Bart De Bruyn
Publisher: Birkhäuser
ISBN: 3319438115
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end of the book. This book is aimed at graduate students and researchers in the fields of combinatorics and incidence geometry.