Growth and Study of Indium Nitride by Organometallic Vapor Phase Epitaxy

Growth and Study of Indium Nitride by Organometallic Vapor Phase Epitaxy PDF Author: 楊富祥
Publisher:
ISBN:
Category :
Languages : en
Pages : 124

Get Book Here

Book Description

Growth and Study of Indium Nitride by Organometallic Vapor Phase Epitaxy

Growth and Study of Indium Nitride by Organometallic Vapor Phase Epitaxy PDF Author: 楊富祥
Publisher:
ISBN:
Category :
Languages : en
Pages : 124

Get Book Here

Book Description


Indium Nitride Growth by Metal-organic Vapor Phase Epitaxy

Indium Nitride Growth by Metal-organic Vapor Phase Epitaxy PDF Author: Taewoong Kim
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
ABSTRACT: InN and In-rich compositions of In[subscript x]Ga[subscript 1-x]N, have potential for a variety of device applications including solar cells. This work addresses the growth of high quality InN by metalorganic vapor phase epitaxy. To better understand the material a thermodynamic assessment of the In-N-C-H system was performed to yield the In-N P-T diagram. In addition, the InN critical thickness was calculated for several candidate substrates to guide substrate selection. Furthermore, computational fluid dynamics was used to design an improved reactor. A vertical NH3 tube design produced the lowest reported [omega]-2[theta] rocking curve FWHM value of (574 arcsec) for InN grown on GaN/Al2O3 (0001). The film surface was also mirror-like as judged by AFM (RMS roughness = 4.2 nm). The PL peak energy of 0.82 eV was obtained for InN grown on Si, consistent with recent reports of a considerably lower of bandgap energy.

Organometallic Vapor-Phase Epitaxy

Organometallic Vapor-Phase Epitaxy PDF Author: Gerald B. Stringfellow
Publisher: Elsevier
ISBN: 0080538185
Category : Science
Languages : en
Pages : 599

Get Book Here

Book Description
Organometallic Vapor-Phase Epitaxy describes the operation of a particular technique for the production of compound semiconductor materials. It describes how the technique works, how it can be used for the growth of particular materials and structures, and the application of these materials for specific devices. It contains not only a fundamental description of the operation of the technique but also contains lists of data useful for the everyday operation of OMVPE reactors. It also offers specific recipes that can be used to produce a wide range of specific materials, structures, and devices. Updated with new emphasis on the semiconducting nitride materials—GaN and its alloys with In and Al Emphasizes the newly understood aspects of surface processes Contains a new chapter, as well as several new sections in chapters on thermodynamics and kinetics

Metalorganic Vapor Phase Epitaxy (MOVPE)

Metalorganic Vapor Phase Epitaxy (MOVPE) PDF Author: Stuart Irvine
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582

Get Book Here

Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

Indium Nitride and Related Alloys

Indium Nitride and Related Alloys PDF Author: Timothy David Veal
Publisher: CRC Press
ISBN: 1439859612
Category : Technology & Engineering
Languages : en
Pages : 707

Get Book Here

Book Description
Written by recognized leaders in this dynamic and rapidly expanding field, Indium Nitride and Related Alloys provides a clear and comprehensive summary of the present state of knowledge in indium nitride (InN) research. It elucidates and clarifies the often confusing and contradictory scientific literature to provide valuable and rigorous insight into the structural, optical, and electronic properties of this quickly emerging semiconductor material and its related alloys. Drawing from both theoretical and experimental perspectives, it provides a thorough review of all data since 2001 when the band gap of InN was identified as 0.7 eV. The superior transport and optical properties of InN and its alloys offer tremendous potential for a wide range of device applications, including high-efficiency solar cells and chemical sensors. Indeed, the now established narrow band gap nature of InN means that the InGaN alloys cover the entire solar spectrum and InAlN alloys span from the infrared to the ultraviolet. However, with unsolved problems including high free electron density, difficulty in characterizing p-type doping, and the lack of a lattice-matched substrate, indium nitride remains perhaps the least understood III-V semiconductor. Covering the epitaxial growth, experimental characterization, theoretical understanding, and device potential of this semiconductor and its alloys, this book is essential reading for both established researchers and those new to the field.

Growth and Characterezation of Indium Nitride Layers Grown by High-pressure Chemical Vapor Deposition

Growth and Characterezation of Indium Nitride Layers Grown by High-pressure Chemical Vapor Deposition PDF Author: Mustafa Alevli
Publisher:
ISBN:
Category : Indium
Languages : en
Pages :

Get Book Here

Book Description
In this research the growth of InN epilayers by high-pressure chemical vapor deposition (HPCVD) and structural, optical properties of HPCVD grown InN layers has been studied. We demonstrated that the HPCVD approach suppresses the thermal decomposition of InN, and therefore extends the processing parameters towards the higher growth temperatures (up to 1100K for reactor pressures of 15 bar, molar ammonia and TMI ratios around 800, and a carrier gas flow of 12 slm). Structural and surface morphology studies of InN thin layers have been performed by X-ray diffraction, low energy electron diffraction (LEED), auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS) and atomic force microscopy (AFM). Raman spectroscopy, infrared reflection, transmission, photoluminescence spectroscopy studies have been carried out to investigate the structural and optical properties of InN films grown on sapphire and GaN/sapphire templates. InN layers grown on a GaN (0002) epilayer exhibit single-phase InN (0002) X-ray diffraction peaks with a full width at half maximum (FWHM) around 200 arcsec. Auger electron spectroscopy confirmed the cleanliness of the surface, and low energy electron diffraction yielded a 1x1 hexagonal pattern indicating a well-ordered surface. The plasmon excitations are shifted to lower energies in HREEL spectra due to the higher carrier concentration at the surface than in the bulk, suggesting a surface electron accumulation. The surface roughness of samples grown on GaN templates is found to be smoother (roughness of 9 nm) compared to the samples grown on sapphire. We found that the deposition sometimes led to the growth of 3 dimensional hexagonal InN pyramids. Results obtained from Raman and IR reflectance measurements are used to estimate the free carrier concentrations, which were found in the range from mid 10^18 cm-3 to low 10^20 cm-3. The optical absorption edge energy calculated from the transmission spectra is 1.2 eV for samples of lower electron concentration. The Raman analysis revealed a high-quality crystalline layer with a FWHM for the E2(high) peak around 6.9 cm^-1. The results presented in our study suggest that the optimum molar ratio might be below 800, which is due to the efficient cracking of the ammonia precursor at the high reactor pressure and high growth temperature.

Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology PDF Author:
Publisher: Newnes
ISBN: 0080932282
Category : Science
Languages : en
Pages : 3572

Get Book Here

Book Description
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1058

Get Book Here

Book Description


MOCVD Growth and Study of Thin Films of Indium Nitride

MOCVD Growth and Study of Thin Films of Indium Nitride PDF Author: Abhishek Jain
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Metalorganic Chemical Vapor Depositon [sic] of Indium Nitride and Indium Gallium Nitride Thin Films and Nanostructures for Electronic and Photovoltaic Applications

Metalorganic Chemical Vapor Depositon [sic] of Indium Nitride and Indium Gallium Nitride Thin Films and Nanostructures for Electronic and Photovoltaic Applications PDF Author: Joshua L. Mangum
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A VLS growth mechanism is proposed, however, a VS growth mechanism can be achieved at high N/In ratios. SEM and TEM analysis revealed a core-shell nanowire structure with a single crystal InN core and a poly-crystalline In2O3 shell. Nanowire growth occurs along the [0002] direction with diameters and lengths ranging from 100 to 300 nm and 10 to 40 microns, respectively for a 1 hr growth. H-MOCVD growth of InN nano- and microrods occurred on different substrates and the nanorod structure was studied by TEM. The polarity of the substrate directly affected the nanorod tip shape and prismatic stacking faults are suggested as the cause for the flower-like growth habit. Variation of growth parameters, such as temperature, N/In ratio, and Cl/In ratio proved to be ineffective at changing the aspect ratio of the nanorods. Increased growth duration produces microrod size dimensions regardless of the chosen growth conditions.