Author: M. Arkowitz
Publisher: Springer
ISBN: 3540349685
Category : Mathematics
Languages : en
Pages : 39
Book Description
Many of the sets that one encounters in homotopy classification problems have a natural group structure. Among these are the groups [A, nX] of homotopy classes of maps of a space A into a loop-space nx. Other examples are furnished by the groups (̃y) of homotopy classes of homotopy equivalences of a space Y with itself. The groups [A, nX] and (̃Y) are not necessarily abelian. It is our purpose to study these groups using a numerical invariant which can be defined for any group. This invariant, called the rank of a group, is a generalisation of the rank of a finitely generated abelian group. It tells whether or not the groups considered are finite and serves to distinguish two infinite groups. We express the rank of subgroups of [A, nX] and of C(Y) in terms of rational homology and homotopy invariants. The formulas which we obtain enable us to compute the rank in a large number of concrete cases. As the main application we establish several results on commutativity and homotopy-commutativity of H-spaces. Chapter 2 is purely algebraic. We recall the definition of the rank of a group and establish some of its properties. These facts, which may be found in the literature, are needed in later sections. Chapter 3 deals with the groups [A, nx] and the homomorphisms f*: [B, nl̃ ̃[A, nx] induced by maps f: A ̃B. We prove a general theorem on the rank of the intersection of coincidence subgroups (Theorem 3. 3).
Groups of Homotopy Classes
Author: M. Arkowitz
Publisher: Springer
ISBN: 3540349685
Category : Mathematics
Languages : en
Pages : 39
Book Description
Many of the sets that one encounters in homotopy classification problems have a natural group structure. Among these are the groups [A, nX] of homotopy classes of maps of a space A into a loop-space nx. Other examples are furnished by the groups (̃y) of homotopy classes of homotopy equivalences of a space Y with itself. The groups [A, nX] and (̃Y) are not necessarily abelian. It is our purpose to study these groups using a numerical invariant which can be defined for any group. This invariant, called the rank of a group, is a generalisation of the rank of a finitely generated abelian group. It tells whether or not the groups considered are finite and serves to distinguish two infinite groups. We express the rank of subgroups of [A, nX] and of C(Y) in terms of rational homology and homotopy invariants. The formulas which we obtain enable us to compute the rank in a large number of concrete cases. As the main application we establish several results on commutativity and homotopy-commutativity of H-spaces. Chapter 2 is purely algebraic. We recall the definition of the rank of a group and establish some of its properties. These facts, which may be found in the literature, are needed in later sections. Chapter 3 deals with the groups [A, nx] and the homomorphisms f*: [B, nl̃ ̃[A, nx] induced by maps f: A ̃B. We prove a general theorem on the rank of the intersection of coincidence subgroups (Theorem 3. 3).
Publisher: Springer
ISBN: 3540349685
Category : Mathematics
Languages : en
Pages : 39
Book Description
Many of the sets that one encounters in homotopy classification problems have a natural group structure. Among these are the groups [A, nX] of homotopy classes of maps of a space A into a loop-space nx. Other examples are furnished by the groups (̃y) of homotopy classes of homotopy equivalences of a space Y with itself. The groups [A, nX] and (̃Y) are not necessarily abelian. It is our purpose to study these groups using a numerical invariant which can be defined for any group. This invariant, called the rank of a group, is a generalisation of the rank of a finitely generated abelian group. It tells whether or not the groups considered are finite and serves to distinguish two infinite groups. We express the rank of subgroups of [A, nX] and of C(Y) in terms of rational homology and homotopy invariants. The formulas which we obtain enable us to compute the rank in a large number of concrete cases. As the main application we establish several results on commutativity and homotopy-commutativity of H-spaces. Chapter 2 is purely algebraic. We recall the definition of the rank of a group and establish some of its properties. These facts, which may be found in the literature, are needed in later sections. Chapter 3 deals with the groups [A, nx] and the homomorphisms f*: [B, nl̃ ̃[A, nx] induced by maps f: A ̃B. We prove a general theorem on the rank of the intersection of coincidence subgroups (Theorem 3. 3).
Topology of Lie Groups
Author: American Mathematical Society
Publisher:
ISBN: 9780821813423
Category : Mathematics
Languages : en
Pages : 451
Book Description
Publisher:
ISBN: 9780821813423
Category : Mathematics
Languages : en
Pages : 451
Book Description
Groups of Homotopy Spheres, I
Author: M. A. Kervaire
Publisher:
ISBN: 9781021177575
Category : History
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781021177575
Category : History
Languages : en
Pages : 0
Book Description
Categorical Homotopy Theory
Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371
Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371
Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Counterexamples in Topology
Author: Lynn Arthur Steen
Publisher: Courier Corporation
ISBN: 0486319296
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
Publisher: Courier Corporation
ISBN: 0486319296
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
Nilpotence and Periodicity in Stable Homotopy Theory
Author: Douglas C. Ravenel
Publisher: Princeton University Press
ISBN: 9780691025728
Category : Mathematics
Languages : en
Pages : 228
Book Description
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.
Publisher: Princeton University Press
ISBN: 9780691025728
Category : Mathematics
Languages : en
Pages : 228
Book Description
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.
Complex Cobordism and Stable Homotopy Groups of Spheres
Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
A Concise Course in Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
On Homotopy
Author: Ioan James
Publisher:
ISBN:
Category : Commutative semigroups
Languages : en
Pages : 52
Book Description
Publisher:
ISBN:
Category : Commutative semigroups
Languages : en
Pages : 52
Book Description
Topological Library
Author: Serge? Petrovich Novikov
Publisher: World Scientific
ISBN: 9814401315
Category : Mathematics
Languages : en
Pages : 590
Book Description
The final volume of the three-volume edition, this book features classical papers on algebraic and differential topology published in 1950-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950. That is, from Serre's celebrated "singular homologies of fiber spaces."
Publisher: World Scientific
ISBN: 9814401315
Category : Mathematics
Languages : en
Pages : 590
Book Description
The final volume of the three-volume edition, this book features classical papers on algebraic and differential topology published in 1950-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950. That is, from Serre's celebrated "singular homologies of fiber spaces."