Author: Yvette Kosmann-Schwarzbach
Publisher: Springer Science & Business Media
ISBN: 0387788662
Category : Mathematics
Languages : en
Pages : 207
Book Description
- Combines material from many areas of mathematics, including algebra, geometry, and analysis, so students see connections between these areas - Applies material to physics so students appreciate the applications of abstract mathematics - Assumes only linear algebra and calculus, making an advanced subject accessible to undergraduates - Includes 142 exercises, many with hints or complete solutions, so text may be used in the classroom or for self study
Groups and Symmetries
Groups and Symmetry
Author: Mark A. Armstrong
Publisher: Springer Science & Business Media
ISBN: 1475740344
Category : Mathematics
Languages : en
Pages : 197
Book Description
This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.
Publisher: Springer Science & Business Media
ISBN: 1475740344
Category : Mathematics
Languages : en
Pages : 197
Book Description
This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.
Theory Of Groups And Symmetries: Finite Groups, Lie Groups, And Lie Algebras
Author: Alexey P Isaev
Publisher: World Scientific
ISBN: 9813236876
Category : Science
Languages : en
Pages : 475
Book Description
The book presents the main approaches in study of algebraic structures of symmetries in models of theoretical and mathematical physics, namely groups and Lie algebras and their deformations. It covers the commonly encountered quantum groups (including Yangians). The second main goal of the book is to present a differential geometry of coset spaces that is actively used in investigations of models of quantum field theory, gravity and statistical physics. The third goal is to explain the main ideas about the theory of conformal symmetries, which is the basis of the AdS/CFT correspondence.The theory of groups and symmetries is an important part of theoretical physics. In elementary particle physics, cosmology and related fields, the key role is played by Lie groups and algebras corresponding to continuous symmetries. For example, relativistic physics is based on the Lorentz and Poincare groups, and the modern theory of elementary particles — the Standard Model — is based on gauge (local) symmetry with the gauge group SU(3) x SU(2) x U(1). This book presents constructions and results of a general nature, along with numerous concrete examples that have direct applications in modern theoretical and mathematical physics.
Publisher: World Scientific
ISBN: 9813236876
Category : Science
Languages : en
Pages : 475
Book Description
The book presents the main approaches in study of algebraic structures of symmetries in models of theoretical and mathematical physics, namely groups and Lie algebras and their deformations. It covers the commonly encountered quantum groups (including Yangians). The second main goal of the book is to present a differential geometry of coset spaces that is actively used in investigations of models of quantum field theory, gravity and statistical physics. The third goal is to explain the main ideas about the theory of conformal symmetries, which is the basis of the AdS/CFT correspondence.The theory of groups and symmetries is an important part of theoretical physics. In elementary particle physics, cosmology and related fields, the key role is played by Lie groups and algebras corresponding to continuous symmetries. For example, relativistic physics is based on the Lorentz and Poincare groups, and the modern theory of elementary particles — the Standard Model — is based on gauge (local) symmetry with the gauge group SU(3) x SU(2) x U(1). This book presents constructions and results of a general nature, along with numerous concrete examples that have direct applications in modern theoretical and mathematical physics.
Symmetries and Group Theory in Particle Physics
Author: Giovanni Costa
Publisher: Springer
ISBN: 3642154824
Category : Science
Languages : en
Pages : 300
Book Description
Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.
Publisher: Springer
ISBN: 3642154824
Category : Science
Languages : en
Pages : 300
Book Description
Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.
Symmetries and Groups in Signal Processing
Author: Virendra P. Sinha
Publisher: Springer Science & Business Media
ISBN: 9048194342
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
Symmetries and Groups in Signal Processing: An Introduction deals with the subject of symmetry, and with its place and role in modern signal processing. In the sciences, symmetry considerations and related group theoretic techniques have had a place of central importance since the early twenties. In engineering, however, a matching recognition of their power is a relatively recent development. Despite that, the related literature, in the form of journal papers and research monographs, has grown enormously. A proper understanding of the concepts that have emerged in the process requires a mathematical background that goes beyond what is traditionally covered in an engineering undergraduate curriculum. Admittedly, there is a wide selection of excellent introductory textbooks on the subject of symmetry and group theory. But they are all primarily addressed to students of the sciences and mathematics, or to students of courses in mathematics. Addressed to students with an engineering background, this book is meant to help bridge the gap.
Publisher: Springer Science & Business Media
ISBN: 9048194342
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
Symmetries and Groups in Signal Processing: An Introduction deals with the subject of symmetry, and with its place and role in modern signal processing. In the sciences, symmetry considerations and related group theoretic techniques have had a place of central importance since the early twenties. In engineering, however, a matching recognition of their power is a relatively recent development. Despite that, the related literature, in the form of journal papers and research monographs, has grown enormously. A proper understanding of the concepts that have emerged in the process requires a mathematical background that goes beyond what is traditionally covered in an engineering undergraduate curriculum. Admittedly, there is a wide selection of excellent introductory textbooks on the subject of symmetry and group theory. But they are all primarily addressed to students of the sciences and mathematics, or to students of courses in mathematics. Addressed to students with an engineering background, this book is meant to help bridge the gap.
Symmetry and Group theory in Chemistry
Author: M Ladd
Publisher: Elsevier
ISBN: 0857099779
Category : Mathematics
Languages : en
Pages : 424
Book Description
A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries. - Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetry - Covers both point-group and space-group symmetries - Includes tutorial solutions
Publisher: Elsevier
ISBN: 0857099779
Category : Mathematics
Languages : en
Pages : 424
Book Description
A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries. - Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetry - Covers both point-group and space-group symmetries - Includes tutorial solutions
Visual Group Theory
Author: Nathan Carter
Publisher: American Mathematical Soc.
ISBN: 1470464330
Category : Education
Languages : en
Pages : 295
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
Publisher: American Mathematical Soc.
ISBN: 1470464330
Category : Education
Languages : en
Pages : 295
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications
Author: Alexey P Isaev
Publisher: World Scientific
ISBN: 9811217424
Category : Science
Languages : en
Pages : 615
Book Description
This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras.The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sℓ(n, C), so(n, C) and sp(2r, C) is exposed.Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed.Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SO↑(p, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.
Publisher: World Scientific
ISBN: 9811217424
Category : Science
Languages : en
Pages : 615
Book Description
This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras.The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sℓ(n, C), so(n, C) and sp(2r, C) is exposed.Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed.Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SO↑(p, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.
Groups and Symmetry: A Guide to Discovering Mathematics
Author: David W. Farmer
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
The Symmetries of Things
Author: John H. Conway
Publisher: CRC Press
ISBN: 1439864896
Category : Mathematics
Languages : en
Pages : 442
Book Description
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry. Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments. This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.
Publisher: CRC Press
ISBN: 1439864896
Category : Mathematics
Languages : en
Pages : 442
Book Description
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry. Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments. This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.